Suppr超能文献

小非编码RNA的生物合成与作用机制:结构生物学视角的见解

Biogenesis and mechanism of action of small non-coding RNAs: insights from the point of view of structural biology.

作者信息

Costa Marina C, Leitão Ana Lúcia, Enguita Francisco J

机构信息

Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal.

Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, Caparica 2829-516, Portugal.

出版信息

Int J Mol Sci. 2012;13(8):10268-10295. doi: 10.3390/ijms130810268. Epub 2012 Aug 17.

Abstract

Non-coding RNAs are dominant in the genomic output of the higher organisms being not simply occasional transcripts with idiosyncratic functions, but constituting an extensive regulatory network. Among all the species of non-coding RNAs, small non-coding RNAs (miRNAs, siRNAs and piRNAs) have been shown to be in the core of the regulatory machinery of all the genomic output in eukaryotic cells. Small non-coding RNAs are produced by several pathways containing specialized enzymes that process RNA transcripts. The mechanism of action of these molecules is also ensured by a group of effector proteins that are commonly engaged within high molecular weight protein-RNA complexes. In the last decade, the contribution of structural biology has been essential to the dissection of the molecular mechanisms involved in the biosynthesis and function of small non-coding RNAs.

摘要

非编码RNA在高等生物的基因组产物中占主导地位,它们并非仅仅是具有特殊功能的偶然转录本,而是构成了一个广泛的调控网络。在所有非编码RNA种类中,小非编码RNA(微小RNA、小干扰RNA和Piwi相互作用RNA)已被证明处于真核细胞中所有基因组产物调控机制的核心。小非编码RNA由包含处理RNA转录本的特殊酶的几种途径产生。这些分子的作用机制也由一组通常参与高分子量蛋白质-RNA复合物的效应蛋白来确保。在过去十年中,结构生物学的贡献对于剖析小非编码RNA生物合成和功能所涉及的分子机制至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c524/3431858/43d62509d751/ijms-13-10268f1.jpg

相似文献

1
Biogenesis and mechanism of action of small non-coding RNAs: insights from the point of view of structural biology.
Int J Mol Sci. 2012;13(8):10268-10295. doi: 10.3390/ijms130810268. Epub 2012 Aug 17.
2
[Biogenesis of small non-coding RNAs in animals].
Med Sci (Paris). 2018 Feb;34(2):137-144. doi: 10.1051/medsci/20183402011. Epub 2018 Feb 16.
3
Biogenesis and Function of Ago-Associated RNAs.
Trends Genet. 2017 Mar;33(3):208-219. doi: 10.1016/j.tig.2017.01.003. Epub 2017 Feb 4.
4
Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes.
Nat Struct Mol Biol. 2011 Aug 7;18(9):1075-82. doi: 10.1038/nsmb.2091.
5
[Human ribonuclease Dicer – structure and functions].
Postepy Biochem. 2019 Oct 1;65(3):173-182. doi: 10.18388/pb.2019_267.
6
Small non-coding RNA and colorectal cancer.
J Cell Mol Med. 2019 May;23(5):3050-3057. doi: 10.1111/jcmm.14209. Epub 2019 Feb 23.
8
Diverse small non-coding RNAs in RNA interference pathways.
Methods Mol Biol. 2011;764:169-82. doi: 10.1007/978-1-61779-188-8_11.
9
A Structural View of miRNA Biogenesis and Function.
Noncoding RNA. 2022 Jan 18;8(1):10. doi: 10.3390/ncrna8010010.
10
Regulatory non-coding RNAs: revolutionizing the RNA world.
Mol Biol Rep. 2014 Jun;41(6):3915-23. doi: 10.1007/s11033-014-3259-6. Epub 2014 Feb 19.

引用本文的文献

1
Apoptosis-Related Non-Coding RNAs in Cardiac Fibrosis and Heart Failure: Implications for Pathogenesis and Therapy.
J Inflamm Res. 2025 Aug 18;18:11217-11244. doi: 10.2147/JIR.S541159. eCollection 2025.
2
MicroRNA nanoformulation: a promising approach to anti-tumour activity.
Invest New Drugs. 2025 May 14. doi: 10.1007/s10637-025-01534-7.
4
A Quality by Design Approach in Pharmaceutical Development of Non-Viral Vectors with a Focus on miRNA.
Pharmaceutics. 2022 Jul 16;14(7):1482. doi: 10.3390/pharmaceutics14071482.
5
A Structural View of miRNA Biogenesis and Function.
Noncoding RNA. 2022 Jan 18;8(1):10. doi: 10.3390/ncrna8010010.
7
Emerging Roles of Long Non-Coding RNAs as Drivers of Brain Evolution.
Cells. 2019 Nov 6;8(11):1399. doi: 10.3390/cells8111399.
8
Multi-Omics Approaches to Study Long Non-coding RNA Function in Atherosclerosis.
Front Cardiovasc Med. 2019 Feb 19;6:9. doi: 10.3389/fcvm.2019.00009. eCollection 2019.
9
RNA 2'-O-Methylation (Nm) Modification in Human Diseases.
Genes (Basel). 2019 Feb 5;10(2):117. doi: 10.3390/genes10020117.
10
Differential expression of small RNA pathway genes associated with the Biomphalaria glabrata/Schistosoma mansoni interaction.
PLoS One. 2017 Jul 18;12(7):e0181483. doi: 10.1371/journal.pone.0181483. eCollection 2017.

本文引用的文献

1
Small RNAs in development - insights from plants.
Curr Opin Genet Dev. 2012 Aug;22(4):361-7. doi: 10.1016/j.gde.2012.04.004. Epub 2012 May 9.
2
The crystal structure of human Argonaute2.
Science. 2012 May 25;336(6084):1037-40. doi: 10.1126/science.1221551. Epub 2012 Apr 26.
3
Quantitative functions of Argonaute proteins in mammalian development.
Genes Dev. 2012 Apr 1;26(7):693-704. doi: 10.1101/gad.182758.111.
4
The molecular architecture of human Dicer.
Nat Struct Mol Biol. 2012 Mar 18;19(4):436-40. doi: 10.1038/nsmb.2268.
5
Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing.
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):1919-24. doi: 10.1073/pnas.1114514109. Epub 2012 Jan 23.
6
miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs.
Nat Struct Mol Biol. 2011 Oct 7;18(11):1218-26. doi: 10.1038/nsmb.2166.
7
GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets.
Mol Cell. 2011 Oct 7;44(1):120-33. doi: 10.1016/j.molcel.2011.09.007.
8
Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms.
Annu Rev Genet. 2011;45:447-69. doi: 10.1146/annurev-genet-110410-132541. Epub 2011 Sep 19.
9
Piwis and piwi-interacting RNAs in the epigenetics of cancer.
J Cell Biochem. 2012 Feb;113(2):373-80. doi: 10.1002/jcb.23363.
10
3' end formation of PIWI-interacting RNAs in vitro.
Mol Cell. 2011 Sep 16;43(6):1015-22. doi: 10.1016/j.molcel.2011.07.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验