Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada.
Langmuir. 2012 Oct 2;28(39):14010-7. doi: 10.1021/la3025414. Epub 2012 Sep 18.
Chitosan (CH), partially N-deacetylated chitin, is a biodegradable and biocompatible polymer that has shown great potential in drug delivery and tissue engineering applications. Although bioadhesive, CH has limited mucoadhesion in wet conditions due to weak interactions with biological surfaces. DOPA (3,4-dihydroxy-L-phenylalanine), a catechol-containing molecule naturally present in marine mussel foot proteins, has been shown to increase the mucoadhesion of several polymers. We report here a simple and bioinspired approach to enhance CH mucoadhesion in wet conditions by preparing mixed hydrogels including CH and different catechol-containing compounds, namely DOPA, hydrocaffeic acid (HCA), and dopamine (DA). We characterized the hydrogels for their swelling, release kinetics of the catechol compounds, and mucoadhesive strength to rabbit small intestine. The swelling of the hydrogels was pH dependent with maximum swelling at pH 1. The hydrogel swelling was higher in the presence of the DOPA and DA but lower in the presence of HCA. HCA/CH hydrogel also showed the slowest catechol release, most likely due to electrostatic interactions between CH and HCA. Lower hydrogel swelling and slower HCA release resulted in increased mucoadhesion: HCA/CH showed more than 2-fold enhancement of mucoadhesion to rabbit small intestine compared to CH alone. Since it is known that catechol compounds can be oxidized, we analyzed the oxidation of DOPA, HCA, and DA at different pH values and its effect on mucoadhesion. We found that oxidation occurring before contact with the intestinal mucosa did not improve mucoadhesion, while oxidation occurring during the contact further increased the mucoadhesion of HCA/CH hydrogels. These results show that mucoadhesion of CH hydrogels can be increased with a simple bioinspired approach, which has the potential to be applied to other polymers since it does not require any chemical modification.
壳聚糖(CH),部分脱乙酰化的甲壳素,是一种可生物降解和生物相容的聚合物,在药物传递和组织工程应用中显示出巨大的潜力。尽管具有生物粘附性,但由于与生物表面的相互作用较弱,CH 在潮湿条件下的粘膜粘附性有限。DOPA(3,4-二羟基-L-苯丙氨酸),一种天然存在于海洋贻贝足部蛋白质中的儿茶酚类分子,已被证明可以提高几种聚合物的粘膜粘附性。我们在这里报告了一种简单而仿生的方法,通过制备包括 CH 和不同儿茶酚类化合物(即 DOPA、咖啡酸(HCA)和多巴胺(DA))的混合水凝胶来增强 CH 在潮湿条件下的粘膜粘附性。我们对水凝胶的溶胀、儿茶酚化合物的释放动力学以及与兔小肠的粘膜粘附强度进行了表征。水凝胶的溶胀与 pH 值有关,在 pH 值为 1 时达到最大溶胀。在存在 DOPA 和 DA 的情况下,水凝胶的溶胀较高,而在存在 HCA 的情况下则较低。HCA/CH 水凝胶的儿茶酚释放也最慢,这很可能是由于 CH 和 HCA 之间的静电相互作用。较低的水凝胶溶胀和较慢的 HCA 释放导致粘膜粘附性增加:与单独的 CH 相比,HCA/CH 对兔小肠的粘膜粘附性提高了 2 倍以上。由于已知儿茶酚类化合物可以被氧化,我们分析了 DOPA、HCA 和 DA 在不同 pH 值下的氧化及其对粘膜粘附性的影响。我们发现,在与肠粘膜接触之前发生的氧化并没有改善粘膜粘附性,而在接触过程中发生的氧化进一步增加了 HCA/CH 水凝胶的粘膜粘附性。这些结果表明,通过简单的仿生方法可以提高 CH 水凝胶的粘膜粘附性,由于不需要任何化学修饰,因此有可能应用于其他聚合物。