Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, Taiwan, Republic of China.
PLoS One. 2012;7(8):e42095. doi: 10.1371/journal.pone.0042095. Epub 2012 Aug 31.
One great challenge of genomic research is to efficiently and accurately identify complex gene regulatory networks. The development of high-throughput technologies provides numerous experimental data such as DNA sequences, protein sequence, and RNA expression profiles makes it possible to study interactions and regulations among genes or other substance in an organism. However, it is crucial to make inference of genetic regulatory networks from gene expression profiles and protein interaction data for systems biology. This study will develop a new approach to reconstruct time delay boolean networks as a tool for exploring biological pathways. In the inference strategy, we will compare all pairs of input genes in those basic relationships by their corresponding p-scores for every output gene. Then, we will combine those consistent relationships to reveal the most probable relationship and reconstruct the genetic network. Specifically, we will prove that O(log n) state transition pairs are sufficient and necessary to reconstruct the time delay boolean network of n nodes with high accuracy if the number of input genes to each gene is bounded. We also have implemented this method on simulated and empirical yeast gene expression data sets. The test results show that this proposed method is extensible for realistic networks.
基因组学研究的一个重大挑战是有效地、准确地识别复杂的基因调控网络。高通量技术的发展提供了大量的实验数据,如 DNA 序列、蛋白质序列和 RNA 表达谱,使得研究生物体内基因或其他物质之间的相互作用和调控成为可能。然而,从基因表达谱和蛋白质相互作用数据中推断遗传调控网络对于系统生物学来说是至关重要的。本研究将开发一种新的方法来重建时滞布尔网络,作为探索生物途径的工具。在推断策略中,我们将通过每个输出基因的相应 p 值来比较输入基因中所有基本关系对之间的关系。然后,我们将结合这些一致的关系来揭示最可能的关系,并重建遗传网络。具体来说,如果每个基因的输入基因数量是有界的,我们将证明 O(log n) 个状态转换对足以且足以高精度地重建具有 n 个节点的时滞布尔网络。我们还在模拟和经验酵母基因表达数据集上实现了这种方法。测试结果表明,这种方法对于现实网络是可扩展的。