DFG Research Center Molecular Physiology of Brain, Zentrum für Physiologie und Pathophysiologie, Abteilung Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen, Göttingen, Germany.
PLoS One. 2012;7(8):e43981. doi: 10.1371/journal.pone.0043981. Epub 2012 Aug 29.
Spreading depression (SD) is characterized by a sustained near-complete depolarization of neurons, a massive depolarization of glia, and a negative deflection of the extracellular DC potential. These electrophysiological signs are accompanied by an intrinsic optical signal (IOS) which arises from changes in light scattering and absorption. Even though the underlying mechanisms are unclear, the IOS serves as non-invasive tool to define the spatiotemporal dynamics of SD in brain slices. Usually the tissue is illuminated by white light, and light reflectance or transmittance is monitored. Using a polychromatic, fast-switchable light source we now performed temporo-spectral recordings of the IOS associated with hypoxia-induced SD-like depolarization (HSD) in rat hippocampal slices kept in an interface recording chamber. Recording full illumination spectra (320-680 nm) yielded distinct reflectance profiles for the different phases of HSD. Early during hypoxia tissue reflectance decreased within almost the entire spectrum due to cell swelling. HSD was accompanied by a reversible reflectance increase being most pronounced at 400 nm and 460 nm. At 440 nm massive porphyrin absorption (Soret band) was detected. Hypotonic solutions, Ca(2+)-withdrawal and glial poisoning intensified the reflectance increase during HSD, whereas hypertonic solutions dampened it. Replacement of Cl(-) inverted the reflectance increase. Inducing HSD by cyanide distorted the IOS and reflectance at 340-400 nm increased irreversibly. The pronounced changes at short wavelengths (380 nm, 460 nm) and their cyanide sensitivity suggest that block of mitochondrial metabolism contributes to the IOS during HSD. For stable and reliable IOS recordings during HSD wavelengths of 460-560 nm are recommended.
电扩散性去极化(SD)的特征是神经元持续的几乎完全去极化、神经胶质的巨大去极化以及细胞外 DC 电势的负向偏转。这些电生理学征象伴随着内在的光学信号(IOS),该信号源自光散射和吸收的变化。尽管潜在的机制尚不清楚,但 IOS 作为一种非侵入性工具,可用于定义脑切片中 SD 的时空动力学。通常,组织被白光照射,并监测光反射或透射。我们现在使用多色、快速可切换光源,在保持在界面记录室中的大鼠海马切片中进行了与缺氧诱导的类似 SD 去极化(HSD)相关的 IOS 的时频谱记录。记录全光照光谱(320-680nm)为 HSD 的不同阶段提供了独特的反射率曲线。在缺氧早期,由于细胞肿胀,几乎整个光谱范围内的组织反射率都降低了。HSD 伴随着可恢复的反射率增加,在 400nm 和 460nm 处最为明显。在 440nm 处检测到大量卟啉吸收(Soret 带)。低渗溶液、Ca(2+)-缺失和神经胶质中毒会加剧 HSD 期间的反射率增加,而高渗溶液则会抑制它。Cl(-)的替代会反转反射率的增加。通过氰化物诱导 HSD 会扭曲 IOS,并且 340-400nm 处的反射率增加是不可逆的。短波长(380nm、460nm)的明显变化及其对氰化物的敏感性表明,线粒体代谢的阻断可能导致 HSD 期间的 IOS。对于 HSD 期间稳定可靠的 IOS 记录,建议使用 460-560nm 的波长。