Suppr超能文献

基于聚乳酸的生物纳米复合材料:一类有前途的混合材料。

Polylactide-based bionanocomposites: a promising class of hybrid materials.

机构信息

DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, South Africa.

出版信息

Acc Chem Res. 2012 Oct 16;45(10):1710-20. doi: 10.1021/ar3000376. Epub 2012 Sep 6.

Abstract

Polylactide (PLA) is the oldest and potentially one of the most interesting and useful biodegradable man-made polymers because of its renewable origin, controlled synthesis, good mechanical properties, and inherent biocompatibility. The blending of PLA with functional nanoparticles can yield a new class of hybrid materials, commonly known as bionanocomposites, where 1-5% nanoparticles by volume are molecularly dispersed within the PLA matrix. The dispersed nanoparticles with their large surface areas and low percolation thresholds both can improve the properties significantly in comparison with neat PLA and can introduce new value-added properties. Recently, researchers have made extraordinary progress in the practical processing and development of products from PLA bionanocomposites. The variation of the nanofillers with different functionalities can lead to many bionanocomposite applications including environmentally friendly packaging, materials for construction, automobiles, and tissue regeneration, and load-bearing scaffolds for bone reconstruction. This Account focuses on these recent research efforts, processing techniques, and key research challenges in the development of PLA-based bionanocomposites for use in applications from green plastics to biomedical applications. Growing concerns over environmental issues and high demand for advanced polymeric materials with balanced properties have led to the development of bionanocomposites of PLA and natural origin fillers, such as nanoclays. The combination of nanoclays with the PLA matrix allows us to develop green nanocomposites that possess several superior properties. For example, adding ∼5 vol % clay to PLA improved the storage modulus, tensile strength, break elongation, crystallization rate, and other mechanical properties. More importantly, the addition of clay decreases the gas and water vapor permeation, increases the heat distortion temperature and scratch resistance, and controls the biodegradation of the PLA matrix. In biomedicine, researchers have employed the design rules found in nature to fabricate PLA-based bionanocomposites. The incorporation of functional nanoparticles in the PLA matrix has improved the physical properties and changed the surface characteristics of the matrix that are important for tissue engineering and artificial bone reconstruction, such as its thermal and electrical conductivity, surface roughness, and wettability. Finally, of the introduction of bionanocomposite biocompatible surfaces on drugs, such as antibiotics, could produce delivery systems that act locally.

摘要

聚乳酸(PLA)是最古老的、最有趣的和最有用的可生物降解人造聚合物之一,因为它具有可再生的来源、可控的合成、良好的机械性能和固有的生物相容性。PLA 与功能性纳米粒子共混可以得到一类新的混合材料,通常称为生物纳米复合材料,其中体积为 1-5%的纳米粒子在 PLA 基质中呈分子分散。分散的纳米粒子具有较大的表面积和较低的渗滤阈值,与纯 PLA 相比,它们都可以显著改善性能,并引入新的附加值性能。最近,研究人员在 PLA 生物纳米复合材料的实际加工和产品开发方面取得了非凡的进展。具有不同功能的纳米填料的变化可以导致许多生物纳米复合材料的应用,包括环保包装材料、建筑材料、汽车和组织再生材料,以及用于骨重建的承重支架。本账户重点介绍了这些最近的研究进展、加工技术以及 PLA 基生物纳米复合材料在从绿色塑料到生物医学应用的发展中的关键研究挑战。人们对环境问题的日益关注以及对具有平衡性能的先进聚合物材料的高需求,导致了 PLA 与天然来源填料(如纳米粘土)的生物纳米复合材料的发展。纳米粘土与 PLA 基质的结合使我们能够开发具有多种优异性能的绿色纳米复合材料。例如,向 PLA 中添加约 5 体积%的粘土可以提高储能模量、拉伸强度、断裂伸长率、结晶速率和其他机械性能。更重要的是,添加粘土可以降低气体和水蒸气的渗透率,提高热变形温度和耐划伤性,并控制 PLA 基质的生物降解。在生物医学领域,研究人员已经利用自然界中的设计规则来制造 PLA 基生物纳米复合材料。在 PLA 基质中加入功能性纳米粒子,改善了物理性能,改变了基质的表面特性,这些特性对组织工程和人工骨重建很重要,如热导率和电导率、表面粗糙度和润湿性。最后,在抗生素等药物上引入生物纳米复合材料的生物相容性表面,可能会产生局部作用的输送系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验