Departments of Chemistry and Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States.
Biochemistry. 2012 Oct 2;51(39):7699-711. doi: 10.1021/bi301026c. Epub 2012 Sep 19.
Disruption of the unusual thiol-based redox homeostasis mechanisms in Staphylococcus aureus represents a unique opportunity to identify new metabolic processes and new targets for intervention. Targeting uncommon aspects of CoASH biosynthetic and redox functions in S. aureus, the antibiotic CJ-15,801 has recently been demonstrated to be an antimetabolite of the CoASH biosynthetic pathway in this organism; CoAS-mimetics containing α,β-unsaturated sulfone and carboxyl moieties have also been exploited as irreversible inhibitors of S. aureus coenzyme A-disulfide reductase (SaCoADR). In this work we have determined the crystal structures of three of these covalent SaCoADR-inhibitor complexes, prepared by inactivation of wild-type enzyme during turnover. The structures reveal the covalent linkage between the active-site Cys43-S(γ) and C(β) of the vinyl sulfone or carboxyl moiety. The full occupancy of two inhibitor molecules per enzyme dimer, together with kinetic analyses of the wild-type/C43S heterodimer, indicates that half-sites-reactivity is not a factor during normal catalytic turnover. Further, we provide the structures of SaCoADR active-site mutants; in particular, Tyr419'-OH plays dramatic roles in directing intramolecular reduction of the Cys43-SSCoA redox center, in the redox asymmetry observed for the two FAD per dimer in NADPH titrations, and in catalysis. The two conformations observed for the Ser43 side chain in the C43S mutant structure lend support to a conformational switch for Cys43-S(γ) during its catalytic Cys43-SSCoA/Cys43-SH redox cycle. Finally, the structures of the three inhibitor complexes provide a framework for design of more effective inhibitors with therapeutic potential against several major bacterial pathogens.
金黄色葡萄球菌中异常硫醇氧化还原平衡机制的破坏为鉴定新的代谢过程和干预的新靶点提供了独特的机会。最近,针对金黄色葡萄球菌 CoASH 生物合成和氧化还原功能的罕见方面,抗生素 CJ-15,801 被证明是该生物体内 CoASH 生物合成途径的抗代谢物;含有α,β-不饱和砜和羧基部分的 CoAS 类似物也被用作金黄色葡萄球菌辅酶 A-二硫化物还原酶 (SaCoADR) 的不可逆抑制剂。在这项工作中,我们通过酶周转过程中野生型酶的失活,确定了其中三种共价 SaCoADR 抑制剂复合物的晶体结构。这些结构揭示了活性位点 Cys43-S(γ)和 C(β)与乙烯砜或羧基部分的 C(β)之间的共价键。每个酶二聚体中完全占据两个抑制剂分子,以及野生型/C43S 杂二聚体的动力学分析表明,在正常催化周转过程中,半位点反应不是一个因素。此外,我们提供了 SaCoADR 活性位点突变体的结构;特别是 Tyr419'-OH 在指导 Cys43-SSCoA 氧化还原中心的分子内还原、每个二聚体中两个 FAD 在 NADPH 滴定中观察到的氧化还原不对称性以及催化中起着重要作用。C43S 突变体结构中 Ser43 侧链观察到的两种构象支持 Cys43-S(γ)在其催化 Cys43-SSCoA/Cys43-SH 氧化还原循环中的构象转换。最后,三种抑制剂复合物的结构为设计更有效的抑制剂提供了框架,这些抑制剂具有针对几种主要细菌病原体的治疗潜力。