Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
Lab Chip. 2012 Nov 7;12(21):4441-8. doi: 10.1039/c2lc40195a.
We demonstrate continuous-flow biomolecule concentration and detection in a microfabricated slanted sieving structure, which we term a herringbone nanofilter array (HNA). The HNA structure consists of periodically-patterned deep and shallow nanoslits meeting at right angles. In addition to concentration, we can discriminate different sized analytes by mixing a fluorescent probe with the sample and measuring the extent of the concentrating effect. Using this principle, we interrogate biomolecular interactions, including protein-DNA binding, protein-protein interaction and antibody-antigen binding. The final example demonstrates a novel method to perform a homogeneous immunoassay for detecting a disease marker, human C-reactive protein (CRP), using fluorescent-labeled antibodies at clinically relevant concentrations. The signal amplification potential and continuous flow operation provide a significant advantage over other microfluidic batch separation techniques for the easy integration of this device into a common point-of-care diagnostic platform.
我们展示了在微制造的倾斜筛分结构中连续流动的生物分子浓缩和检测,我们称之为人字形纳米滤器阵列 (HNA)。HNA 结构由周期性图案化的深纳米狭缝和浅纳米狭缝相交组成,呈直角排列。除了浓缩作用,我们还可以通过将荧光探针与样品混合并测量浓缩效果的程度来区分不同大小的分析物。利用这一原理,我们研究了生物分子相互作用,包括蛋白质-DNA 结合、蛋白质-蛋白质相互作用和抗体-抗原结合。最后一个例子展示了一种新的方法,使用荧光标记的抗体在临床相关浓度下进行均相免疫测定,用于检测疾病标志物人 C 反应蛋白 (CRP)。与其他微流控批量分离技术相比,该信号放大潜力和连续流动操作具有显著优势,便于将该装置集成到常见的即时诊断平台中。