Suppr超能文献

使用调和函数对囊状脑动脉瘤进行交互式分解和映射:首次应用于“患者特异性”计算流体动力学 (CFD) 模拟。

Interactive decomposition and mapping of saccular cerebral aneurysms using harmonic functions: its first application with "patient-specific" computational fluid dynamics (CFD) simulations.

机构信息

Medical Physics Department, University of Wisconsin, Madison, WI 53705, USA.

出版信息

IEEE Trans Med Imaging. 2013 Feb;32(2):153-64. doi: 10.1109/TMI.2012.2216542. Epub 2012 Aug 31.

Abstract

Recent developments in medical imaging and advanced computer modeling simulations) now enable studies designed to correlate either simulated or measured "patient-specific" parameters with the natural history of intracranial aneurysm i.e., ruptured or unruptured. To achieve significance, however, these studies require rigorous comparison of large amounts of data from large numbers of aneurysms, many of which are quite dissimilar anatomically. In this study, we present a method that can likely facilitate such studies as its application could potentially simplify an objective comparison of surface-based parameters of interest such as wall shear stress and blood pressure using large multi-patient, multi-institutional data sets. Based on the concept of harmonic function/field, we present a unified and simple approach for mapping the surface of an aneurysm onto a unit disc. Requiring minimal human interactions the algorithm first decomposes the vessel geometry into 1) target aneurysm and 2) parent artery and any adjacent branches; it, then, maps the segmented aneurysm surface onto a unit disk. In particular, the decomposition of the vessel geometry quantitatively exploits the unique combination of three sets of information regarding the shape of the relevant vasculature: 1) a distance metric defining the spatially varying deviation from a tubular characteristic (i.e., cylindrical structure) of a normal parent artery, 2) local curvatures and 3) local concavities at the junction/interface between an aneurysm and its parent artery. These three sets of resultant shape/geometrical data are then combined to construct a linear system of the Laplacian equation with a novel shape-sensitive weighting scheme. The solution to such a linear system is a shape-sensitive harmonic function/field whose iso-lines will densely gather at the border between the normal parent artery and the aneurysm. Finally, a simple ranking system is utilized to select the best candidate among all possible iso-lines. Quantitative analysis using “patient-specific” aneurysm geometries taken from our internal database demonstrated that the technique is robust. Similar results were obtained from aneurysms having widely different geometries (bifurcation, terminal and lateral aneurysms). Application of our method should allow for meaningful, reliable and reproducible model-to-model comparisons of surface-based physiological and hemodynamic parameters.

摘要

医学成像和先进的计算机建模模拟领域的最新进展,使得人们现在可以进行研究,将模拟或测量的“患者特定”参数与颅内动脉瘤的自然史(即破裂或未破裂)相关联。然而,为了具有统计学意义,这些研究需要对大量动脉瘤的大量数据进行严格比较,其中许多在解剖学上差异很大。在这项研究中,我们提出了一种方法,该方法可能有助于进行此类研究,因为它的应用有可能简化对基于表面的感兴趣参数(例如壁切应力和血压)的客观比较,从而使用大型多患者,多机构数据集。基于调和函数/场的概念,我们提出了一种统一而简单的方法,可将动脉瘤的表面映射到单位圆上。该算法需要最小的人为交互作用,首先将血管几何形状分解为 1)目标动脉瘤和 2)母动脉和任何相邻分支;然后,将分割的动脉瘤表面映射到单位圆上。特别是,血管几何形状的分解定量地利用了有关相关脉管系统形状的三组信息的独特组合:1)定义与正常母动脉的管状特征(即圆柱状结构)的空间变化偏差的距离度量,2)局部曲率和 3)在动脉瘤与其母动脉之间的交界处/界面处的局部凹陷。然后,将这三组形状/几何数据组合在一起,以构建具有新颖形状敏感加权方案的拉普拉斯方程的线性系统。这样的线性系统的解是一个形状敏感的调和函数/场,其等距线将在正常母动脉和动脉瘤的边界处密集聚集。最后,使用简单的排名系统从所有可能的等距线中选择最佳候选者。使用来自我们内部数据库的“患者特定”动脉瘤几何形状进行的定量分析表明,该技术是稳健的。从具有广泛不同几何形状(分叉,末端和侧部动脉瘤)的动脉瘤中获得了类似的结果。我们的方法的应用应该允许对基于表面的生理和血液动力学参数进行有意义,可靠和可重复的模型间比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验