Suppr超能文献

开发一种用于在前脑脉管系统中进行计算流体动力学模拟的近乎自动化的开源流程:一项可行性研究。

Developing a nearly automated open-source pipeline for conducting computational fluid dynamics simulations in anterior brain vasculature: a feasibility study.

作者信息

Rezaeitaleshmahalleh Mostafa, Mu Nan, Lyu Zonghan, Gemmete Joseph, Pandey Aditya, Jiang Jingfeng

机构信息

Department of Biomedical Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA.

Center for Biocomputing and Digital Health, Institute of Computing and Cybernetics and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA.

出版信息

Sci Rep. 2024 Dec 4;14(1):30181. doi: 10.1038/s41598-024-80891-4.

Abstract

Intracranial aneurysms (IA) pose significant health risks and are often challenging to manage. Computational fluid dynamics (CFD) simulation has emerged as a powerful tool for understanding lesion-specific hemodynamics in and around IAs, aiding in the clinical management of patients with an IA. However, the current workflow of CFD simulations is time-consuming, complex, and labor-intensive and, thus, does not fit the clinical environment. To address these challenges, we have developed a semi-automated pipeline integrating multiple open-source software packages to streamline the CFD simulation process. Specifically, the study utilized medical angiography data from 18 patients. An in-house open-source DL image segmentation model (ARU-Net) was employed to generate 3D computer models of the anterior circulation. The segmented intracranial vasculature models, including IAs, were further refined using the Vascular Modeling Toolkit (VMTK), an open-source Python package. This step involved smoothing the surface of the models and extending the inlet and outlet regions to ensure a realistic representation of the vascular geometry. The refined vascular models were then converted into computational meshes using an open-source mesh generator known as TetGen. This process was nearly automated and required minimal user interaction(s). Blood flow simulations of the cerebral vascular models were performed using established SimVascular solvers (an open-source finite element platform for vascular applications) through an application programming interface (API). The CFD simulation process was also conducted using the manual workflow for comparative purposes. The initial assessment compared the geometries derived from manual and DL-based segmentation. The DL-based segmentation demonstrated reliable performance, closely aligning with manually segmented results, evidenced by excellent Pearson correlation coefficient (PCC) values and low relative difference (RD) values ranging from 3% to 10% between the computed geometrical variables derived from both methods. The statistical analysis of the computed hemodynamic variables, including velocity informatics and WSS-related variables, indicated good to excellent reliability for most parameters (e.g., ICC of 0.85-0.95). Given the data investigated, the proposed automated workflow streamlines the process of conducting CFD simulations. It generates results consistent with the current standard manual CFD protocol while minimizing dependence on user input.

摘要

颅内动脉瘤(IA)带来重大健康风险,且管理起来往往颇具挑战。计算流体动力学(CFD)模拟已成为理解IA内部及周围病变特异性血流动力学的强大工具,有助于IA患者的临床管理。然而,当前CFD模拟的工作流程耗时、复杂且 labor-intensive,因此并不适合临床环境。为应对这些挑战,我们开发了一个集成多个开源软件包的半自动管道,以简化CFD模拟过程。具体而言,该研究使用了18名患者的医学血管造影数据。采用内部开源的深度学习图像分割模型(ARU-Net)生成前循环的3D计算机模型。包括IA在内的分割后的颅内血管模型,使用开源Python包血管建模工具包(VMTK)进一步优化。这一步骤包括平滑模型表面以及扩展入口和出口区域,以确保血管几何形状的真实呈现。然后,使用名为TetGen的开源网格生成器将优化后的血管模型转换为计算网格。这个过程几乎是自动化的,只需最少的用户交互。通过应用程序编程接口(API),使用既定的SimVascular求解器(用于血管应用的开源有限元平台)对脑血管模型进行血流模拟。为了进行比较,CFD模拟过程也采用手动工作流程。初步评估比较了手动分割和基于深度学习的分割得出的几何形状。基于深度学习的分割表现出可靠的性能,与手动分割结果紧密对齐,这通过出色的皮尔逊相关系数(PCC)值以及两种方法得出的计算几何变量之间3%至10%的低相对差异(RD)值得以证明。对计算得出的血流动力学变量(包括速度信息学和与壁面切应力相关的变量)的统计分析表明,大多数参数具有良好到出色的可靠性(例如,组内相关系数为0.85 - 0.95)。鉴于所研究的数据,所提出的自动化工作流程简化了进行CFD模拟的过程。它生成的结果与当前标准的手动CFD协议一致,同时将对用户输入的依赖降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e72e/11618461/a91196ff19f5/41598_2024_80891_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验