Max Planck Institute for Bioinorganic Chemistry, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
J Chem Phys. 2012 Sep 7;137(9):094102. doi: 10.1063/1.4747454.
The electric g-tensor is a central quantity for the interpretation of electron paramagnetic resonance spectra. In this paper, a detailed derivation of the 1-electron contributions to the g-tensor is presented in the framework of linear response theory and the second-order Douglas-Kroll-Hess (DKH) transformation. Importantly, the DKH transformation in the presence of a magnetic field is not unique. Whether or not the magnetic field is included in the required Foldy-Wouthuysen transformation, different transformation matrices and, consequently, Hamiltonians result. In this paper, a detailed comparison of both approaches is presented, paying particular attention to the mathematical properties of the resulting Hamiltonians. In contrast to previous studies that address the g-tensor in the framework of DKH theory, the resulting terms are compared to those of the conventional Pauli theory and are given a physical interpretation. Based on these mathematical and physical arguments, we establish that the proper DKH transformation for systems with constant magnetic fields is based on a gauge-invariant Foldy-Wouthuysen transformation, i.e., a Foldy-Wouthuysen transformation including the magnetic field. Calculations using density functional theory (DFT) are carried out on a set of heavy, diatomic molecules, and a set of transition-metal complexes. Based on these calculations, the performance of the relativistic calculation with and without inclusion of picture-change effects is compared. Additionally, the g-tensor is calculated for the Lanthanide dihydrides. Together with the results from the other two molecular test sets, these calculations serve to quantify the magnitude of picture-change effects and elucidate trends across the periodic table.
电 g 张量是解释电子顺磁共振谱的一个重要参数。本文在线性响应理论和二阶道格拉斯-克罗尔-赫斯(DKH)变换的框架下,详细推导了单电子对 g 张量的贡献。重要的是,存在磁场时的 DKH 变换并不唯一。是否将磁场包含在所需的福里迪-渥赫乌森变换中,会导致不同的变换矩阵和相应的哈密顿量。本文详细比较了这两种方法,特别关注了所得哈密顿量的数学性质。与以前在 DKH 理论框架下研究 g 张量的研究不同,所得项与传统的泡利理论的项进行了比较,并给出了物理解释。基于这些数学和物理论据,我们确定了具有恒定磁场的系统的适当的 DKH 变换基于规范不变的福里迪-渥赫乌森变换,即包含磁场的福里迪-渥赫乌森变换。我们在一组重原子双原子分子和一组过渡金属配合物上进行了密度泛函理论(DFT)计算。基于这些计算,比较了包含和不包含图像变换效应的相对论计算的性能。此外,还计算了镧系元素二氢化物的 g 张量。与其他两个分子测试集的结果一起,这些计算有助于量化图像变换效应的大小,并阐明整个元素周期表上的趋势。