Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.
Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
Inorg Chem. 2022 Apr 4;61(13):5201-5214. doi: 10.1021/acs.inorgchem.1c03196. Epub 2022 Jan 24.
Mercury is in some sense an enigmatic element. The element and some of its compounds are a natural part of the biogeochemical cycle; while many of these can be deadly poisons at higher levels, environmental levels in the absence of anthropogenic contributions would generally be below the threshold for concern. However, mercury pollution, particularly from burning fossil fuels such as coal, is providing dramatic and increasing emissions into the environment. Because of this, the environmental chemistry and toxicology of mercury are of growing importance, with the fate of mercury being vitally dependent upon its speciation. X-ray absorption spectroscopy (XAS) provides a powerful tool for chemical speciation, but is severely limited by poor spectroscopic energy resolution. Here, we provide a systematic examination of mercury Lα1 high energy resolution fluorescence detected XAS (HERFD-XAS) as an approach for chemical speciation of mercury, in quantitative comparison with conventional Hg L-edge XAS. We show that, unlike some lighter elements, chemical shifts in the Lα1 X-ray fluorescence energy can be safely neglected, so that mercury Lα1 HERFD-XAS can be treated simply as a high-resolution version of conventional XAS. We present spectra of a range of mercury compounds that may be relevant to the environmental and life science research and show that density functional theory can produce adequate simulations of the spectra. We discuss strengths and limitations of the method and quantitatively demonstrate improvements both in speciation for complex mixtures and in background rejection for low concentrations.
汞在某种意义上是一种神秘的元素。该元素及其某些化合物是生物地球化学循环的自然组成部分;虽然在较高水平下,其中许多化合物都是致命的毒药,但在没有人为贡献的情况下,环境水平通常低于令人担忧的阈值。然而,汞污染,特别是来自燃烧化石燃料(如煤)的汞污染,正在向环境中大量且不断增加地排放。因此,汞的环境化学和毒理学变得越来越重要,汞的命运在很大程度上取决于其形态。X 射线吸收光谱(XAS)是一种用于化学形态分析的强大工具,但由于光谱能量分辨率差而受到严重限制。在这里,我们系统地研究了汞 Lα1 高能量分辨荧光探测 XAS(HERFD-XAS)作为一种化学形态分析汞的方法,与传统的 Hg L 边 XAS 进行了定量比较。我们表明,与一些较轻的元素不同,Lα1 X 射线荧光能量的化学位移可以安全地忽略,因此汞 Lα1 HERFD-XAS 可以简单地视为传统 XAS 的高分辨率版本。我们展示了一系列可能与环境和生命科学研究相关的汞化合物的光谱,并表明密度泛函理论可以对光谱进行充分的模拟。我们讨论了该方法的优缺点,并定量证明了该方法在复杂混合物的形态分析和低浓度的背景抑制方面都有了改进。