Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
Langmuir. 2012 Oct 2;28(39):14065-72. doi: 10.1021/la302913j. Epub 2012 Sep 18.
3D nanostructured transparent indium tin oxide (ITO) electrodes prepared by glancing angle deposition (GLAD) were used for the spectroelectrochemical characterization of cytochrome c (Cyt c) and neuroglobin (Nb). These small hemoproteins, involved as electron-transfer partners in the prevention of apoptosis, are oppositely charged at physiological pH and can each be adsorbed within the ITO network under different pH conditions. The resulting modified electrodes were investigated by UV-visible absorption spectroscopy coupled with cyclic voltammetry. By using nondenaturating adsorption conditions, we demonstrate that both proteins are capable of direct electron transfer to the conductive ITO surface, sharing apparent standard potentials similar to those reported in solution. Preservation of the 3D protein structure upon adsorption was confirmed by resonance Raman (rR) spectroscopy. Analysis of the derivative cyclic voltabsorptograms (DCVA) monitored either in the Soret or the Q bands at scan rates up to 1 V s(-1) allowed us to investigate direct interfacial electron transfer kinetics. From the DCVA shape and scan rate dependences, we conclude that the interaction of Cyt c with the ITO surface is more specific than Nb, suggesting an oriented adsorption of Cyt c and a random adsorption of Nb on the ITO surface. At the same time, Cyt c appears more sensitive to the experimental adsorption conditions, and complete denaturation of Cyt c may occur as evidenced from cross-correlation of rR spectroscopy and spectroelectrochemistry.
使用掠入射沉积(GLAD)制备的 3D 纳米结构透明氧化铟锡(ITO)电极用于细胞色素 c(Cyt c)和神经球蛋白(Nb)的光谱电化学表征。这些小的血红素蛋白作为细胞凋亡预防中的电子转移伙伴,在生理 pH 下带相反电荷,并且可以在不同的 pH 条件下各自被吸附到 ITO 网络中。通过使用非变性吸附条件,我们证明这两种蛋白质都能够直接向导电 ITO 表面进行电子转移,其表观标准电位与在溶液中报道的相似。吸附时保留 3D 蛋白质结构通过共振拉曼(rR)光谱得到证实。在高达 1 V s(-1)的扫描速率下监测到的 Soret 或 Q 带的导数循环伏安吸收光谱(DCVA)的分析允许我们研究直接界面电子转移动力学。从 DCVA 形状和扫描速率依赖性,我们得出结论,Cyt c 与 ITO 表面的相互作用比 Nb 更具特异性,这表明 Cyt c 的定向吸附和 Nb 在 ITO 表面的随机吸附。同时,Cyt c 似乎对实验吸附条件更敏感,如 rR 光谱和光谱电化学的互相关表明,Cyt c 可能完全变性。