Suppr超能文献

最优解的随机和间断运动对 G 矩阵的进化和性状均值对选择的反应的影响。

The effects of stochastic and episodic movement of the optimum on the evolution of the G-matrix and the response of the trait mean to selection.

机构信息

Department of Biology, Texas A&M University, College Station, TX 77843, USA.

出版信息

J Evol Biol. 2012 Nov;25(11):2210-31. doi: 10.1111/j.1420-9101.2012.02598.x. Epub 2012 Sep 7.

Abstract

Theoretical and empirical results demonstrate that the G-matrix, which summarizes additive genetic variances and covariances of quantitative traits, changes over time. Such evolution and fluctuation of the G-matrix could potentially have wide-ranging effects on phenotypic evolution. Nevertheless, no studies have yet addressed G-matrix stability and evolution when movement of an intermediate optimum includes large, episodic jumps or stochasticity. Here, we investigate such scenarios by using simulation-based models of G-matrix evolution. These analyses yield four important insights regarding the evolution and stability of the G-matrix. (i) Regardless of the model of peak movement, a moving optimum causes the G-matrix to orient towards the direction of net peak movement, so that genetic variance is enhanced in that direction (the variance enhancement effect). (ii) Peak movement skews the distribution of breeding values in the direction of movement, which impedes the response to selection. (iii) The stability of the G-matrix is affected by the overall magnitude and direction of peak movement, but modes and rates of peak movement have surprisingly small effects (the invariance principle). (iv) Both episodic and stochastic peak movement increase the probability that a population will fall below its carrying capacity and go extinct. We also present novel equations for the response of the trait mean to multivariate selection, which take into account the higher moments of the distribution of breeding values.

摘要

理论和实证研究结果表明,G 矩阵概括了数量性状的加性遗传方差和协方差,它会随时间发生变化。G 矩阵的这种演变和波动可能会对表型进化产生广泛的影响。然而,目前还没有研究探讨当中间最优值的移动包括大的、阶段性跳跃或随机性时,G 矩阵的稳定性和进化。在这里,我们使用 G 矩阵进化的基于模拟的模型来研究这些情况。这些分析为 G 矩阵的进化和稳定性提供了四个重要的见解。(i)无论最佳移动的模型如何,移动的最佳值都会导致 G 矩阵朝着净最佳移动的方向定向,从而在该方向上增强遗传方差(方差增强效应)。(ii)最佳移动使繁殖值的分布向移动的方向倾斜,从而阻碍了对选择的反应。(iii)G 矩阵的稳定性受最佳移动的总体幅度和方向的影响,但最佳移动的模式和速度的影响很小(不变性原理)。(iv)阶段性和随机最佳移动都会增加种群低于承载能力并灭绝的概率。我们还提出了一种新的多元选择对性状平均值的反应方程,该方程考虑了繁殖值分布的更高阶矩。

相似文献

3
The mutation matrix and the evolution of evolvability.突变矩阵与进化能力的演变。
Evolution. 2007 Apr;61(4):727-45. doi: 10.1111/j.1558-5646.2007.00071.x.
10
Directional selection can drive the evolution of modularity in complex traits.定向选择可以推动复杂性状模块化的进化。
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):470-5. doi: 10.1073/pnas.1322632112. Epub 2014 Dec 29.

引用本文的文献

3
On the importance of evolving phenotype distributions on evolutionary diversification.论表型分布在进化多样化中的重要性。
PLoS Comput Biol. 2021 Feb 16;17(2):e1008733. doi: 10.1371/journal.pcbi.1008733. eCollection 2021 Feb.
4
How does the strength of selection influence genetic correlations?选择强度如何影响遗传相关性?
Evol Lett. 2020 Nov 3;4(6):468-478. doi: 10.1002/evl3.201. eCollection 2020 Dec.
8
Rethinking Living Fossils.重新审视活化石
Bioscience. 2018 Oct 1;68(10):760-770. doi: 10.1093/biosci/biy084. Epub 2018 Aug 15.

本文引用的文献

4
CHANGES IN GENETIC VARIANCES AND COVARIANCES: G WHIZ!遗传方差和协方差的变化:天哪!
Evolution. 1995 Dec;49(6):1260-1267. doi: 10.1111/j.1558-5646.1995.tb04452.x.
6
MUTATION LOAD AND THE SURVIVAL OF SMALL POPULATIONS.突变负荷与小种群的生存
Evolution. 1990 Nov;44(7):1725-1737. doi: 10.1111/j.1558-5646.1990.tb05244.x.
7
ADAPTIVE RADIATION ALONG GENETIC LINES OF LEAST RESISTANCE.沿阻力最小遗传路线的适应性辐射
Evolution. 1996 Oct;50(5):1766-1774. doi: 10.1111/j.1558-5646.1996.tb03563.x.
9
PHENOTYPIC EVOLUTION BY NEUTRAL MUTATION.中性突变导致的表型进化
Evolution. 1986 Sep;40(5):915-935. doi: 10.1111/j.1558-5646.1986.tb00561.x.
10
The million-year wait for macroevolutionary bursts.百万年等待大进化爆发。
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15908-13. doi: 10.1073/pnas.1014503108. Epub 2011 Aug 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验