IRCCS Istituto delle Scienze Neurologiche di Bologna, University of Bologna, Via Ugo Foscolo 7, 40123 Bologna, Italy.
Mol Cell Neurosci. 2013 Jul;55(100):62-76. doi: 10.1016/j.mcn.2012.08.004. Epub 2012 Aug 15.
Retinal ganglion cells (RGCs) project their long axons, composing the optic nerve, to the brain, transmitting the visual information gathered by the retina, ultimately leading to formed vision in the visual cortex. The RGC cellular system, representing the anterior part of the visual pathway, is vulnerable to mitochondrial dysfunction and optic atrophy is a very frequent feature of mitochondrial and neurodegenerative diseases. The start of the molecular era of mitochondrial medicine, the year 1988, was marked by the identification of a maternally inherited form of optic atrophy, Leber's hereditary optic neuropathy, as the first disease due to mitochondrial DNA point mutations. The field of mitochondrial medicine has expanded enormously over the last two decades and many neurodegenerative diseases are now known to have a primary mitochondrial etiology or mitochondrial dysfunction plays a relevant role in their pathogenic mechanism. Recent technical advancements in neuro-ophthalmology, such as optical coherence tomography, prompted a still ongoing systematic re-investigation of retinal and optic nerve involvement in neurodegenerative disorders. In addition to inherited optic neuropathies, such as Leber's hereditary optic neuropathy and dominant optic atrophy, and in addition to the syndromic mitochondrial encephalomyopathies or mitochondrial neurodegenerative disorders such as some spinocerebellar ataxias or familial spastic paraparesis and other disorders, we draw attention to the involvement of the optic nerve in classic age-related neurodegenerative disorders such as Parkinson and Alzheimer disease. We here provide an overview of optic nerve pathology in these different clinical settings, and we review the possible mechanisms involved in the pathogenesis of optic atrophy. This may be a model of general value for the field of neurodegeneration. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
视网膜神经节细胞 (RGC) 伸出其长轴突,构成视神经,投射至大脑,传递视网膜收集的视觉信息,最终在视皮层形成视觉。RGC 细胞系统代表视觉通路的前段,易受到线粒体功能障碍的影响,而视神经萎缩是线粒体和神经退行性疾病的一个非常常见的特征。1988 年,线粒体医学的分子时代开始,这一年确定了一种母系遗传型视神经萎缩,即莱伯遗传性视神经病变,为第一个由于线粒体 DNA 点突变引起的疾病。过去二十年中,线粒体医学领域已经得到了极大的扩展,现在许多神经退行性疾病被认为具有原发性线粒体病因,或者线粒体功能障碍在其发病机制中起相关作用。神经眼科学的最近技术进展,如光学相干断层扫描,促使对神经退行性疾病中视网膜和视神经的受累进行了持续的系统再研究。除了遗传性视神经病变,如莱伯遗传性视神经病变和显性视神经萎缩,以及综合征性线粒体脑肌病或线粒体神经退行性疾病,如某些脊髓小脑共济失调或家族性痉挛性截瘫等疾病之外,我们还注意到视神经在经典的年龄相关性神经退行性疾病如帕金森病和阿尔茨海默病中的受累。我们在此概述了这些不同临床情况下视神经病变,并回顾了视神经萎缩发病机制中涉及的可能机制。这可能是神经退行性疾病领域的一个具有普遍价值的模型。本文是特刊“神经退行性疾病中的线粒体功能和功能障碍”的一部分。