Chiu Yi-Han, Lin Shu-Chuan Amy, Kuo Chen-Hsin, Li Chia-Jung
Department of Microbiology, Soochow University, Taipei, Taiwan.
Department of Nursing, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan.
Front Cell Dev Biol. 2021 Sep 17;9:743892. doi: 10.3389/fcell.2021.743892. eCollection 2021.
Mitochondria are double-membraned organelles that exhibit fluidity. They are the main site of cellular aerobic respiration, providing energy for cell proliferation, migration, and survival; hence, they are called "powerhouses." Mitochondria play an important role in biological processes such as cell death, cell senescence, autophagy, lipid synthesis, calcium homeostasis, and iron balance. Fission and fusion are active processes that require many specialized proteins, including mechanical enzymes that physically alter mitochondrial membranes, and interface proteins that regulate the interaction of these mechanical proteins with organelles. This review discusses the molecular mechanisms of mitochondrial fusion, fission, and physiopathology, emphasizing the biological significance of mitochondrial morphology and dynamics. In particular, the regulatory mechanisms of mitochondria-related genes and proteins in animal cells are discussed, as well as research trends in mitochondrial dynamics, providing a theoretical reference for future mitochondrial research.
线粒体是具有流动性的双层膜细胞器。它们是细胞有氧呼吸的主要场所,为细胞增殖、迁移和存活提供能量;因此,它们被称为“动力工厂”。线粒体在细胞死亡、细胞衰老、自噬、脂质合成、钙稳态和铁平衡等生物过程中发挥着重要作用。裂变和融合是活跃的过程,需要许多专门的蛋白质,包括物理改变线粒体膜的机械酶,以及调节这些机械蛋白质与细胞器相互作用的界面蛋白质。本文综述讨论了线粒体融合、裂变和生理病理学的分子机制,强调了线粒体形态和动力学的生物学意义。特别讨论了动物细胞中线粒体相关基因和蛋白质的调控机制,以及线粒体动力学的研究趋势,为未来的线粒体研究提供理论参考。