Li Qiao, Clifford Gari D
Institute of Biomedical Engineering, School of Medicine, Shandong University, Jinan, Shandong, China.
J Electrocardiol. 2012 Nov-Dec;45(6):596-603. doi: 10.1016/j.jelectrocard.2012.07.015. Epub 2012 Sep 7.
Due to a lack of integration between different sensors, false alarms (FA) in the intensive care unit (ICU) are frequent and can lead to reduced standard of care. We present a novel framework for FA reduction using a machine learning approach to combine up to 114 signal quality and physiological features extracted from the electrocardiogram, photoplethysmograph, and optionally the arterial blood pressure waveform. A machine learning algorithm was trained and evaluated on a database of 4107 expert-labeled life-threatening arrhythmias, from 182 separate ICU visits. On the independent test data, FA suppression results with no true alarm (TA) suppression were 86.4% for asystole, 100% for extreme bradycardia and 27.8% for extreme tachycardia. For the ventricular tachycardia alarms, the best FA suppression performance was 30.5% with a TA suppression rate below 1%. To reduce the TA suppression rate to zero, a reduction in FA suppression performance to 19.7% was required.
由于不同传感器之间缺乏集成,重症监护病房(ICU)中的误报(FA)频繁发生,可能导致护理标准降低。我们提出了一种用于减少误报的新颖框架,该框架使用机器学习方法来组合从心电图、光电容积脉搏波图以及可选的动脉血压波形中提取的多达114个信号质量和生理特征。在一个包含来自182次独立ICU就诊的4107个由专家标记的危及生命心律失常的数据库上对一种机器学习算法进行了训练和评估。在独立测试数据上,无真正警报(TA)抑制的误报抑制结果对于心搏停止为86.4%,对于极度心动过缓为100%,对于极度心动过速为27.8%。对于室性心动过速警报,最佳误报抑制性能为30.5%,真正警报抑制率低于1%。为了将真正警报抑制率降至零,需要将误报抑制性能降至19.7%。