Suppr超能文献

重症监护病房中假心律失常警报的抑制:一种机器学习方法。

Suppression of false arrhythmia alarms in the ICU: a machine learning approach.

作者信息

Ansari Sardar, Belle Ashwin, Ghanbari Hamid, Salamango Mark, Najarian Kayvan

机构信息

Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA. Michigan Center for Integrative Research in Clinical Care, University of Michigan, Ann Arbor, MI, USA.

出版信息

Physiol Meas. 2016 Aug;37(8):1186-203. doi: 10.1088/0967-3334/37/8/1186. Epub 2016 Jul 25.

Abstract

This paper presents a novel approach for false alarm suppression using machine learning tools. It proposes a multi-modal detection algorithm to find the true beats using the information from all the available waveforms. This method uses a variety of beat detection algorithms, some of which are developed by the authors. The outputs of the beat detection algorithms are combined using a machine learning approach. For the ventricular tachycardia and ventricular fibrillation alarms, separate classification models are trained to distinguish between the normal and abnormal beats. This information, along with alarm-specific criteria, is used to decide if the alarm is false. The results indicate that the presented method was effective in suppressing false alarms when it was tested on a hidden validation dataset.

摘要

本文提出了一种使用机器学习工具抑制误报的新方法。它提出了一种多模态检测算法,利用所有可用波形中的信息来找到真正的心跳。该方法使用了多种心跳检测算法,其中一些是作者开发的。心跳检测算法的输出通过机器学习方法进行组合。对于室性心动过速和心室颤动警报,训练了单独的分类模型来区分正常心跳和异常心跳。这些信息与特定警报标准一起用于判断警报是否为误报。结果表明,当在隐藏的验证数据集上进行测试时,所提出的方法在抑制误报方面是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验