Cardiovascular Research Center Massachusetts General Hospital Boston MA.
Cardiology Division Emory University School of Medicine Atlanta GA.
J Am Heart Assoc. 2021 Dec 7;10(23):e023222. doi: 10.1161/JAHA.121.023222. Epub 2021 Dec 2.
Background Accurate detection of arrhythmic events in the intensive care units (ICU) is of paramount significance in providing timely care. However, traditional ICU monitors generate a high rate of false alarms causing alarm fatigue. In this work, we develop an algorithm to improve life threatening arrhythmia detection in the ICUs using a deep learning approach. Methods and Results This study involves a total of 953 independent life-threatening arrhythmia alarms generated from the ICU bedside monitors of 410 patients. Specifically, we used the ECG (4 channels), arterial blood pressure, and photoplethysmograph signals to accurately detect the onset and offset of various arrhythmias, without prior knowledge of the alarm type. We used a hybrid convolutional neural network based classifier that fuses traditional handcrafted features with features automatically learned using convolutional neural networks. Further, the proposed architecture remains flexible to be adapted to various arrhythmic conditions as well as multiple physiological signals. Our hybrid- convolutional neural network approach achieved superior performance compared with methods which only used convolutional neural network. We evaluated our algorithm using 5-fold cross-validation for 5 times and obtained an accuracy of 87.5%±0.5%, and a score of 81%±0.9%. Independent evaluation of our algorithm on the publicly available PhysioNet 2015 Challenge database resulted in overall classification accuracy and score of 93.9% and 84.3%, respectively, indicating its efficacy and generalizability. Conclusions Our method accurately detects multiple arrhythmic conditions. Suitable translation of our algorithm may significantly improve the quality of care in ICUs by reducing the burden of false alarms.
在重症监护病房(ICU)中准确检测心律失常事件对于及时提供护理至关重要。然而,传统的 ICU 监护仪会产生大量的假警报,导致警报疲劳。在这项工作中,我们使用深度学习方法开发了一种算法,以提高 ICU 中危及生命的心律失常检测的准确性。
本研究共涉及 410 名患者的 ICU 床边监护仪产生的 953 个独立的危及生命的心律失常警报。具体来说,我们使用心电图(4 通道)、动脉血压和光容积脉搏图信号来准确检测各种心律失常的起始和结束,而无需事先了解警报类型。我们使用基于混合卷积神经网络的分类器,该分类器融合了传统的手工制作特征和使用卷积神经网络自动学习的特征。此外,所提出的架构仍然灵活,可以适应各种心律失常情况以及多种生理信号。与仅使用卷积神经网络的方法相比,我们的混合卷积神经网络方法表现出更好的性能。我们使用 5 折交叉验证对算法进行了 5 次评估,得到了 87.5%±0.5%的准确率和 81%±0.9%的得分。我们对公开可用的 PhysioNet 2015 挑战赛数据库上的算法进行了独立评估,得到了总体分类准确率和得分为 93.9%和 84.3%,表明其有效性和通用性。
我们的方法可以准确检测多种心律失常情况。适当翻译我们的算法可以通过减少假警报的负担,显著提高 ICU 的护理质量。