The Babraham Institute, Babraham Research Campus, Babraham, Cambridge CB22 3AT, United Kingdom.
Neuroscience. 2012 Dec 6;225:44-54. doi: 10.1016/j.neuroscience.2012.08.056. Epub 2012 Sep 7.
Calcium accumulation induces the breakdown of cytoskeleton and axonal fragmentation in the late stages of Wallerian degeneration. In the early stages there is no evidence for any long-lasting, extensive increase in intra-axonal calcium but there does appear to be some redistribution. We hypothesized that changes in calcium distribution could have an early regulatory role in axonal degeneration in addition to the late executionary role of calcium. Schmidt-Lanterman clefts (SLCs), which allow exchange of metabolites and ions between the periaxonal and extracellular space, are likely to have an increased role when axon segments are separated from the cell body, so we used the oxalate-pyroantimonate method to study calcium at SLCs in distal stumps of transected wild-type and slow Wallerian degeneration (Wld(S)) mutant sciatic nerves, in which Wallerian degeneration is greatly delayed. In wild-type nerves most SLCs show a step gradient of calcium distribution, which is lost at around 20% of SLCs within 3mm of the lesion site by 4-24h after nerve transection. To investigate further the association with Wallerian degeneration, we studied nerves from Wld(S) rats. The step gradient of calcium distribution in Wld(S) is absent in around 20% of the intact nerves beneath SLCs but 4-24h following injury, calcium distribution in transected axons remained similar to that in uninjured nerves. We then used calcium indicators to study influx and buffering of calcium in injured neurites in primary culture. Calcium penetration and the early calcium increase in this system were indistinguishable between Wld(S) and wild-type axons. However, a significant difference was observed during the following hours, when calcium increased in wild-type neurites but not in Wld(S) neurites. We conclude that there is little relationship between calcium distribution and the early stages of Wallerian degeneration at the time points studied in vivo or in vitro but that Wld(S) neurites fail to show a later calcium rise that could be a cause or consequence of the later stages of Wallerian degeneration.
钙积累会导致轴突在 Wallerian 变性后期的骨架和轴突断裂。在早期,没有证据表明轴内钙有任何持久的、广泛的增加,但确实存在一些重新分布。我们假设,除了钙的晚期执行作用外,钙分布的变化可能在轴突变性的早期阶段具有调节作用。Schmidt-Lanterman 裂隙(SLCs)允许代谢物和离子在轴周和细胞外空间之间交换,当轴突节段与细胞体分离时,SLCs 可能会发挥更大的作用,因此我们使用草酸盐-焦锑酸盐方法研究了 SLCs 中的钙在切断的野生型和缓慢 Wallerian 变性(Wld(S))突变坐骨神经的远端残端,其中 Wallerian 变性大大延迟。在野生型神经中,大多数 SLCs 显示钙分布的阶跃梯度,在神经切断后 4-24 小时内,病变部位 3mm 内约 20%的 SLCs 丢失这种钙分布阶跃梯度。为了进一步研究与 Wallerian 变性的关系,我们研究了 Wld(S)大鼠的神经。在未受伤的 SLC 下,Wld(S) 的钙分布阶跃梯度在大约 20%的神经中缺失,但在损伤后 4-24 小时,切断的轴突中的钙分布仍与未受伤的神经相似。然后,我们使用钙指示剂研究原代培养中损伤神经突内钙的内流和缓冲。在 Wld(S)和野生型轴突中,钙渗透和该系统中的早期钙增加没有区别。然而,在接下来的几个小时观察到了显著差异,此时野生型神经突中的钙增加,但 Wld(S)神经突中的钙没有增加。我们得出结论,在体内或体外研究的时间点,钙分布与 Wallerian 变性的早期阶段几乎没有关系,但 Wld(S)神经突未能显示后期的钙升高,这可能是 Wallerian 变性后期的原因或后果。