Department of Physics and Astronomy, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151-747, Republic of Korea.
Nanoscale. 2012 Oct 21;4(20):6493-500. doi: 10.1039/c2nr30972f.
Electric-field-induced low-volume liquid ejection under ambient conditions was realized at a low bias potential of 12 V via a nanopipette (aperture diameter of 30 nm) combined with a non-contact, distance-regulated (within 10 nm) quartz tuning fork-atomic force microscope. A capillary-condensed water meniscus, spontaneously formed in the tip-substrate nanogap, reduces the ejection barrier by four orders of magnitude, facilitating nanoliquid ejection and subsequent liquid transport/dispersion onto the substrate without contact damage from the pipette. A study of nanofluidics through a free-standing liquid nanochannel and nanolithography was performed with this technique. This is an important breakthrough for various applications in controlled nanomaterial-delivery and selective deposition, such as multicolor nanopatterning and nano-inkjet devices.
在环境条件下,通过纳米管(孔径为 30nm)与非接触式、距离可调(在 10nm 以内)的石英音叉原子力显微镜相结合,在 12V 的低偏置电压下实现了低体积液体的电致喷射。在尖端-基底纳米间隙中自发形成的毛细凝聚水弯月面将喷射势垒降低了四个数量级,从而促进了纳米液体的喷射,并且在不接触纳米管的情况下,液体可以随后转移/分散到基底上而不会造成损伤。通过这种技术对独立的液体纳米通道和纳米光刻进行了纳米流体研究。这是在控制纳米材料输送和选择性沉积方面的各种应用中的一个重要突破,例如多色纳米图案化和纳米喷墨设备。