Suppr超能文献

La2CuO(4+y)中局域晶格畸变的最佳非均匀性。

Optimum inhomogeneity of local lattice distortions in La2CuO(4+y).

机构信息

Department of Physics, Sapienza University of Rome, Roma, Italy.

出版信息

Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15685-90. doi: 10.1073/pnas.1208492109. Epub 2012 Sep 7.

Abstract

Electronic functionalities in materials from silicon to transition metal oxides are, to a large extent, controlled by defects and their relative arrangement. Outstanding examples are the oxides of copper, where defect order is correlated with their high superconducting transition temperatures. The oxygen defect order can be highly inhomogeneous, even in optimal superconducting samples, which raises the question of the nature of the sample regions where the order does not exist but which nonetheless form the "glue" binding the ordered regions together. Here we use scanning X-ray microdiffraction (with a beam 300 nm in diameter) to show that for La(2)CuO(4+y), the glue regions contain incommensurate modulated local lattice distortions, whose spatial extent is most pronounced for the best superconducting samples. For an underdoped single crystal with mobile oxygen interstitials in the spacer La(2)O(2+y) layers intercalated between the CuO(2) layers, the incommensurate modulated local lattice distortions form droplets anticorrelated with the ordered oxygen interstitials, and whose spatial extent is most pronounced for the best superconducting samples. In this simplest of high temperature superconductors, there are therefore not one, but two networks of ordered defects which can be tuned to achieve optimal superconductivity. For a given stoichiometry, the highest transition temperature is obtained when both the ordered oxygen and lattice defects form fractal patterns, as opposed to appearing in isolated spots. We speculate that the relationship between material complexity and superconducting transition temperature T(c) is actually underpinned by a fundamental relation between T(c) and the distribution of ordered defect networks supported by the materials.

摘要

材料中的电子功能,从硅到过渡金属氧化物,在很大程度上受到缺陷及其相对排列的控制。铜的氧化物就是一个突出的例子,其中缺陷的有序性与它们的高温超导转变温度有关。氧缺陷的有序性可能高度不均匀,即使在最佳超导样品中也是如此,这就提出了一个问题,即不存在有序性的样品区域的性质是什么,但这些区域形成了将有序区域结合在一起的“粘结剂”。在这里,我们使用扫描 X 射线微衍射(束斑直径 300nm)来表明,对于 La(2)CuO(4+y),粘结剂区域包含非调幅局部晶格畸变,在最佳超导样品中,其空间范围最为明显。对于一个掺杂不足的单晶,其中在 CuO(2)层之间插入的 La(2)O(2+y)层中的间隙氧离子是可移动的,非调幅局部晶格畸变形成与有序氧离子反相关的液滴,在最佳超导样品中,其空间范围最为明显。在这个最简单的高温超导体中,因此存在两个有序缺陷网络,而不是一个,它们可以被调谐以实现最佳超导性。对于给定的化学计量比,当有序氧和晶格缺陷都形成分形图案时,而不是出现在孤立的点上,会获得最高的转变温度。我们推测,材料复杂性和超导转变温度 T(c)之间的关系实际上是由材料所支持的有序缺陷网络分布与 T(c)之间的基本关系所支撑的。

相似文献

1
Optimum inhomogeneity of local lattice distortions in La2CuO(4+y).
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15685-90. doi: 10.1073/pnas.1208492109. Epub 2012 Sep 7.
2
Scale-free structural organization of oxygen interstitials in La(2)CuO(4+y).
Nature. 2010 Aug 12;466(7308):841-4. doi: 10.1038/nature09260.
3
4
Measurement of unique magnetic and superconducting phases in oxygen-doped high-temperature superconductors La(2-x)Sr(x)CuO(4+y).
Phys Rev Lett. 2013 Nov 27;111(22):227001. doi: 10.1103/PhysRevLett.111.227001. Epub 2013 Nov 25.
5
Superconductivity phase diagram of Na(x)CoO2*1.3H2O.
Nature. 2003 Jul 31;424(6948):527-9. doi: 10.1038/nature01877.
7
Atomic-Resolution Cryogenic Scanning Transmission Electron Microscopy for Quantum Materials.
Acc Chem Res. 2021 Sep 7;54(17):3277-3287. doi: 10.1021/acs.accounts.1c00303. Epub 2021 Aug 20.
8
9
Support of polaronic states and charge carrier concentrations of YBaCuO ceramics by oxygen and MnO impurity.
Microsc Res Tech. 2024 May;87(5):1076-1091. doi: 10.1002/jemt.24498. Epub 2024 Jan 19.
10
Polymorphism control of superconductivity and magnetism in Cs(3)C(60) close to the Mott transition.
Nature. 2010 Jul 8;466(7303):221-5. doi: 10.1038/nature09120. Epub 2010 May 19.

引用本文的文献

2
Nanoscale inhomogeneity of charge density waves dynamics in LaSrNiO.
Sci Rep. 2022 Sep 24;12(1):15964. doi: 10.1038/s41598-022-18925-y.
3
Atomic Stripe Formation in Infinite-Layer Cuprates.
ACS Omega. 2021 Aug 16;6(34):21884-21891. doi: 10.1021/acsomega.1c01720. eCollection 2021 Aug 31.
4
Nanoscale structure and atomic disorder in the iron-based chalcogenides.
Sci Technol Adv Mater. 2013 Feb 21;14(1):014401. doi: 10.1088/1468-6996/14/1/014401. eCollection 2013 Feb.
7
Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor.
Nature. 2015 Sep 17;525(7569):359-62. doi: 10.1038/nature14987.
10
Controlling photoinduced electron transfer via defects self-organization for novel functional macromolecular systems.
Curr Protein Pept Sci. 2014;15(4):394-9. doi: 10.2174/1389203715666140327104023.

本文引用的文献

1
Superconductor-insulator transition on annealed complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061113. doi: 10.1103/PhysRevE.85.061113. Epub 2012 Jun 11.
3
Emergent phenomena at oxide interfaces.
Nat Mater. 2012 Jan 24;11(2):103-13. doi: 10.1038/nmat3223.
4
Superconductivity: An X-ray oxygen regulator.
Nat Mater. 2011 Sep 23;10(10):726-7. doi: 10.1038/nmat3128.
5
Evolution and control of oxygen order in a cuprate superconductor.
Nat Mater. 2011 Oct;10(10):733-6. doi: 10.1038/nmat3088.
6
Evidence for two electronic components in high-temperature superconductivity from NMR.
J Phys Condens Matter. 2009 Nov 11;21(45):455702. doi: 10.1088/0953-8984/21/45/455702. Epub 2009 Oct 23.
7
Condensed-matter physics: The conducting face of an insulator.
Nature. 2011 Jan 13;469(7329):167-8. doi: 10.1038/469167a.
8
Scale-free structural organization of oxygen interstitials in La(2)CuO(4+y).
Nature. 2010 Aug 12;466(7308):841-4. doi: 10.1038/nature09260.
9
High-temperature superconductivity: The benefit of fractal dirt.
Nature. 2010 Aug 12;466(7308):825-7. doi: 10.1038/466825a.
10
Percolative theories of strongly disordered ceramic high-temperature superconductors.
Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1307-10. doi: 10.1073/pnas.0913002107. Epub 2010 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验