Suppr超能文献

缺氧和缺氧诱导因子作为 T 细胞发育、分化和功能的调节剂。

Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function.

机构信息

Mucosal Inflammation Program, Department of Anesthesiology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.

出版信息

Immunol Res. 2013 Mar;55(1-3):58-70. doi: 10.1007/s12026-012-8349-8.

Abstract

Oxygen is a molecule that is central to cellular respiration and viability, yet there are multiple physiologic and pathological contexts in which cells experience conditions of insufficient oxygen availability, a state known as hypoxia. Given the metabolic challenges of a low oxygen environment, hypoxia elicits a range of adaptive responses at the cellular, tissue, and systemic level to promote continued survival and function. Within this context, T lymphocytes are a highly migratory cell type of the adaptive immune system that frequently encounters a wide range of oxygen tensions in both health and disease. It is now clear that oxygen availability regulates T cell differentiation and function, a response orchestrated in large part by the hypoxia-inducible factor transcription factors. Here, we discuss the physiologic scope of hypoxia and hypoxic signaling, the contribution of these pathways in regulating T cell biology, and current gaps in our understanding. Finally, we discuss how emerging therapies that modulate the hypoxic response may offer new modalities to alter T cell function and the outcome of acute and chronic pathologies.

摘要

氧气是细胞呼吸和生存的核心分子,但在多种生理和病理情况下,细胞会经历氧气供应不足的情况,这种状态被称为缺氧。考虑到低氧环境下的代谢挑战,缺氧会在细胞、组织和全身水平引发一系列适应性反应,以促进持续的生存和功能。在这种情况下,T 淋巴细胞是适应性免疫系统中一种高度迁移的细胞类型,在健康和疾病中经常遇到广泛的氧气张力。现在已经清楚,氧气供应调节 T 细胞分化和功能,这种反应在很大程度上是由缺氧诱导因子转录因子协调的。在这里,我们讨论了缺氧和低氧信号的生理范围,这些途径在调节 T 细胞生物学中的贡献,以及我们目前理解上的差距。最后,我们讨论了调节低氧反应的新兴疗法如何为改变 T 细胞功能和急性和慢性病理的结果提供新的方法。

相似文献

2
HIF transcription factors, inflammation, and immunity.
Immunity. 2014 Oct 16;41(4):518-28. doi: 10.1016/j.immuni.2014.09.008.
3
Hypoxia and the Hypoxia-Inducible Factors in Lymphocyte Differentiation and Function.
Adv Exp Med Biol. 2024;1459:115-141. doi: 10.1007/978-3-031-62731-6_6.
4
Hypoxia-inducible factors in T lymphocyte differentiation and function. A Review in the Theme: Cellular Responses to Hypoxia.
Am J Physiol Cell Physiol. 2015 Nov 1;309(9):C580-9. doi: 10.1152/ajpcell.00204.2015. Epub 2015 Sep 9.
5
Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration.
Immunobiology. 2008;213(9-10):733-49. doi: 10.1016/j.imbio.2008.07.031. Epub 2008 Sep 21.
6
Hypoxia-inducible factors regulate T cell metabolism and function.
Mol Immunol. 2015 Dec;68(2 Pt C):527-35. doi: 10.1016/j.molimm.2015.08.004. Epub 2015 Aug 19.
7
Metabolic adaptation of cancer and immune cells mediated by hypoxia-inducible factors.
Biochim Biophys Acta Rev Cancer. 2018 Aug;1870(1):15-22. doi: 10.1016/j.bbcan.2018.07.002. Epub 2018 Jul 11.
8
[Role of hypoxia-inducible factor in the pathogenesis of rheumatoid arthritis].
Beijing Da Xue Xue Bao Yi Xue Ban. 2016 Dec 18;48(6):1095-1099.
9
Keeping the engine primed: HIF factors as key regulators of cardiac metabolism and angiogenesis during ischemia.
J Mol Med (Berl). 2007 Dec;85(12):1309-15. doi: 10.1007/s00109-007-0279-x. Epub 2007 Nov 20.
10
Regulation of angiogenesis by hypoxia and hypoxia-inducible factors.
Curr Top Dev Biol. 2006;76:217-57. doi: 10.1016/S0070-2153(06)76007-0.

引用本文的文献

1
HIF-1α: a bridge connecting sepsis and acute respiratory distress syndrome.
Eur J Med Res. 2025 Aug 31;30(1):827. doi: 10.1186/s40001-025-03107-z.
3
Roles of hypoxia inducible factors in viral infection: Are they a potential therapeutic target?
Virulence. 2025 Dec;16(1):2546680. doi: 10.1080/21505594.2025.2546680. Epub 2025 Aug 13.
5
CAR-T cell therapy and reconstructive oncologic surgery in peripheral solid tumors-A narrative review.
Cell Rep Med. 2025 Aug 19;6(8):102240. doi: 10.1016/j.xcrm.2025.102240. Epub 2025 Jul 16.
6
Alternative Splicing in Tumorigenesis and Cancer Therapy.
Biomolecules. 2025 May 29;15(6):789. doi: 10.3390/biom15060789.
7
OPTRACE: Optical Imaging-Guided Transplantation and Tracking of Cells in the Mouse Brain.
bioRxiv. 2025 May 27:2025.05.24.655973. doi: 10.1101/2025.05.24.655973.
10
Reprogramming of Glucose Metabolism by Nanocarriers to Improve Cancer Immunotherapy: Recent Advances and Applications.
Int J Nanomedicine. 2025 Apr 5;20:4201-4234. doi: 10.2147/IJN.S513207. eCollection 2025.

本文引用的文献

1
Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa.
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2784-93. doi: 10.1073/pnas.1202366109. Epub 2012 Sep 17.
2
HIF-1 in T cells ameliorated dextran sodium sulfate-induced murine colitis.
J Leukoc Biol. 2012 Jun;91(6):901-9. doi: 10.1189/jlb.1011518. Epub 2012 Mar 27.
4
Dynamic regulation of Th17 differentiation by oxygen concentrations.
Int Immunol. 2012 Mar;24(3):137-46. doi: 10.1093/intimm/dxr111. Epub 2011 Dec 29.
5
Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development.
Immunity. 2012 Jan 27;36(1):68-78. doi: 10.1016/j.immuni.2011.12.007. Epub 2011 Dec 28.
6
The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation.
Immunity. 2011 Dec 23;35(6):871-82. doi: 10.1016/j.immuni.2011.09.021.
7
HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression.
Nat Rev Cancer. 2011 Dec 15;12(1):9-22. doi: 10.1038/nrc3183.
8
Microenvironmental hypoxia orchestrating the cell stroma cross talk, tumor progression and antitumor response.
Crit Rev Immunol. 2011;31(5):357-77. doi: 10.1615/critrevimmunol.v31.i5.10.
9
The role of low-level lactate production in airway inflammation in asthma.
Am J Physiol Lung Cell Mol Physiol. 2012 Feb 1;302(3):L300-7. doi: 10.1152/ajplung.00221.2011. Epub 2011 Nov 11.
10
Ischemia and reperfusion--from mechanism to translation.
Nat Med. 2011 Nov 7;17(11):1391-401. doi: 10.1038/nm.2507.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验