Suppr超能文献

适用于人乳头瘤病毒传染病学模型中统计分析的马尔可夫链蒙特卡罗自适应前向投影。

Adaptive Markov chain Monte Carlo forward projection for statistical analysis in epidemic modelling of human papillomavirus.

机构信息

The Kirby Institute, University of New South Wales, Cliffbrook Campus, 45 Beach St, Coogee NSW 2034, Australia.

出版信息

Stat Med. 2013 May 20;32(11):1917-53. doi: 10.1002/sim.5590. Epub 2012 Sep 7.

Abstract

A Bayesian statistical model and estimation methodology based on forward projection adaptive Markov chain Monte Carlo is developed in order to perform the calibration of a high-dimensional nonlinear system of ordinary differential equations representing an epidemic model for human papillomavirus types 6 and 11 (HPV-6, HPV-11). The model is compartmental and involves stratification by age, gender and sexual-activity group. Developing this model and a means to calibrate it efficiently is relevant because HPV is a very multi-typed and common sexually transmitted infection with more than 100 types currently known. The two types studied in this paper, types 6 and 11, are causing about 90% of anogenital warts. We extend the development of a sexual mixing matrix on the basis of a formulation first suggested by Garnett and Anderson, frequently used to model sexually transmitted infections. In particular, we consider a stochastic mixing matrix framework that allows us to jointly estimate unknown attributes and parameters of the mixing matrix along with the parameters involved in the calibration of the HPV epidemic model. This matrix describes the sexual interactions between members of the population under study and relies on several quantities that are a priori unknown. The Bayesian model developed allows one to estimate jointly the HPV-6 and HPV-11 epidemic model parameters as well as unknown sexual mixing matrix parameters related to assortativity. Finally, we explore the ability of an extension to the class of adaptive Markov chain Monte Carlo algorithms to incorporate a forward projection strategy for the ordinary differential equation state trajectories. Efficient exploration of the Bayesian posterior distribution developed for the ordinary differential equation parameters provides a challenge for any Markov chain sampling methodology, hence the interest in adaptive Markov chain methods. We conclude with simulation studies on synthetic and recent actual data.

摘要

为了对表示人类乳头瘤病毒 6 型和 11 型(HPV-6、HPV-11)流行模型的高维非线性系统常微分方程进行校准,开发了一种基于正向投影自适应马尔可夫链蒙特卡罗的贝叶斯统计模型和估计方法。该模型是分区的,涉及按年龄、性别和性行为群体进行分层。开发这种模型并有效地对其进行校准是相关的,因为 HPV 是一种非常多型和常见的性传播感染,目前已知有 100 多种类型。本文研究的两种类型 6 型和 11 型导致了大约 90%的生殖器疣。我们扩展了性混合矩阵的开发,其基础是 Garnett 和 Anderson 首次提出的公式,该公式常用于对性传播感染进行建模。特别是,我们考虑了一个随机混合矩阵框架,该框架允许我们共同估计混合矩阵的未知属性和参数,以及 HPV 流行模型校准中涉及的参数。该矩阵描述了研究人群中成员之间的性相互作用,并依赖于几个先验未知的数量。所开发的贝叶斯模型允许联合估计 HPV-6 和 HPV-11 流行模型参数以及与聚集性相关的未知性混合矩阵参数。最后,我们探索了将自适应马尔可夫链蒙特卡罗算法扩展到一类的能力,以纳入常微分方程状态轨迹的正向投影策略。对为常微分方程参数开发的贝叶斯后验分布进行高效探索对任何马尔可夫链抽样方法都是一个挑战,因此自适应马尔可夫链方法很有意义。我们在合成和最近的实际数据上进行了模拟研究,得出了结论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验