Suppr超能文献

肠道细菌真杆菌可使黄酮类化合物的 C-和 O-糖苷脱糖基化。

Intestinal bacterium Eubacterium cellulosolvens deglycosylates flavonoid C- and O-glucosides.

机构信息

Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.

出版信息

Appl Environ Microbiol. 2012 Nov;78(22):8151-3. doi: 10.1128/AEM.02115-12. Epub 2012 Sep 7.

Abstract

Eubacterium cellulosolvens cleaved the flavone C-glucosides homoorientin and isovitexin to their aglycones luteolin and apigenin, respectively. The corresponding isomers, orientin and vitexin, or other polyphenolic C-glucosides were not deglycosylated. E. cellulosolvens also cleaved several O-coupled glucosides of flavones and isoflavones to their corresponding aglycones.

摘要

纤维丁酸弧菌可将黄酮 C-糖苷橙皮苷和荭草苷分别裂解为其苷元木樨草素和芹菜素。相应的异构体,即橙皮苷和牡荆苷,或其他多酚 C-糖苷则没有被去糖基化。纤维丁酸弧菌还可裂解几种黄酮和异黄酮的 O-连接糖苷,生成相应的苷元。

相似文献

1
Intestinal bacterium Eubacterium cellulosolvens deglycosylates flavonoid C- and O-glucosides.
Appl Environ Microbiol. 2012 Nov;78(22):8151-3. doi: 10.1128/AEM.02115-12. Epub 2012 Sep 7.
2
Identification and functional expression of genes encoding flavonoid O- and C-glycosidases in intestinal bacteria.
Environ Microbiol. 2016 Jul;18(7):2117-29. doi: 10.1111/1462-2920.12864. Epub 2015 May 8.
3
Indirect and direct routes to C-glycosylated flavones in Saccharomyces cerevisiae.
Microb Cell Fact. 2018 Jul 9;17(1):107. doi: 10.1186/s12934-018-0952-5.
4
Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium.
Environ Microbiol. 2011 Feb;13(2):482-94. doi: 10.1111/j.1462-2920.2010.02352.x. Epub 2010 Oct 15.
5
Efficient Production of Orientin and Vitexin from Luteolin and Apigenin Using Coupled Catalysis of Glycosyltransferase and Sucrose Synthase.
J Agric Food Chem. 2021 Jun 16;69(23):6578-6587. doi: 10.1021/acs.jafc.1c00602. Epub 2021 Jun 1.
6
Production of isoorientin and isovitexin from luteolin and apigenin using coupled catalysis of glycosyltransferase and sucrose synthase.
Appl Biochem Biotechnol. 2020 Feb;190(2):601-615. doi: 10.1007/s12010-019-03112-z. Epub 2019 Aug 9.
9
Enzymatic Synthesis of Novel Vitexin Glucosides.
Molecules. 2021 Oct 16;26(20):6274. doi: 10.3390/molecules26206274.

引用本文的文献

2
Flavonoid-converting capabilities of Clostridium butyricum.
Appl Microbiol Biotechnol. 2025 Feb 27;109(1):53. doi: 10.1007/s00253-025-13434-0.
4
Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds.
Gut Microbes. 2024 Jan-Dec;16(1):2426614. doi: 10.1080/19490976.2024.2426614. Epub 2024 Nov 14.
5
Microbiota, natural products, and human health: exploring interactions for therapeutic insights.
Front Cell Infect Microbiol. 2024 Jul 5;14:1371312. doi: 10.3389/fcimb.2024.1371312. eCollection 2024.
6
Gut microbiome-derived hydrolases-an underrated target of natural product metabolism.
Front Cell Infect Microbiol. 2024 Jun 10;14:1392249. doi: 10.3389/fcimb.2024.1392249. eCollection 2024.
9
Theoretical study on the glycosidic C-C bond cleavage of 3''-oxo-puerarin.
Sci Rep. 2023 Sep 28;13(1):16282. doi: 10.1038/s41598-023-43379-1.
10
Engineering Escherichia coli for efficient and economic production of C-glycosylflavonoids by deleting YhhW and regulating pH.
Bioprocess Biosyst Eng. 2023 Sep;46(9):1251-1264. doi: 10.1007/s00449-023-02893-2. Epub 2023 Jun 15.

本文引用的文献

1
Use of 'natural' products as alternatives to antibiotic feed additives in ruminant production.
Animal. 2007 Nov;1(10):1443-66. doi: 10.1017/S1751731107000742.
3
Colonic metabolites of berry polyphenols: the missing link to biological activity?
Br J Nutr. 2010 Oct;104 Suppl 3:S48-66. doi: 10.1017/S0007114510003946.
4
Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium.
Environ Microbiol. 2011 Feb;13(2):482-94. doi: 10.1111/j.1462-2920.2010.02352.x. Epub 2010 Oct 15.
5
Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition.
J Sci Food Agric. 2011 Jan 15;91(1):24-37. doi: 10.1002/jsfa.4152. Epub 2010 Sep 2.
6
Dietary phenolics: chemistry, bioavailability and effects on health.
Nat Prod Rep. 2009 Aug;26(8):1001-43. doi: 10.1039/b802662a. Epub 2009 May 13.
7
Interaction between phenolics and gut microbiota: role in human health.
J Agric Food Chem. 2009 Aug 12;57(15):6485-501. doi: 10.1021/jf902107d.
8
Plant bioactives for ruminant health and productivity.
Phytochemistry. 2008 Jan;69(2):299-322. doi: 10.1016/j.phytochem.2007.08.017. Epub 2007 Oct 4.
9
Bacterial mechanisms to overcome inhibitory effects of dietary tannins.
Microb Ecol. 2005 Aug;50(2):197-205. doi: 10.1007/s00248-004-0180-x. Epub 2005 Oct 20.
10
Characteristics of ruminal anaerobic celluloytic cocci and Cillobacterium cellulosolvens n. sp.
J Bacteriol. 1958 Nov;76(5):529-37. doi: 10.1128/jb.76.5.529-537.1958.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验