Suppr超能文献

高热通过不同的机制促进和阻止呼吸上皮细胞凋亡。

Hyperthermia promotes and prevents respiratory epithelial apoptosis through distinct mechanisms.

机构信息

Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

出版信息

Am J Respir Cell Mol Biol. 2012 Dec;47(6):824-33. doi: 10.1165/rcmb.2012-0105OC. Epub 2012 Sep 6.

Abstract

Hyperthermia has been shown to confer cytoprotection and to augment apoptosis in different experimental models. We analyzed the mechanisms of both effects in the same mouse lung epithelial (MLE) cell line (MLE15). Exposing MLE15 cells to heat shock (HS; 42°C, 2 h) or febrile-range hyperthermia (39.5°C) concurrent with activation of the death receptors, TNF receptor 1 or Fas, greatly accelerated apoptosis, which was detectable within 30 minutes and was associated with accelerated activation of caspase-2, -8, and -10, and the proapoptotic protein, Bcl2-interacting domain (Bid). Caspase-3 activation and cell death were partially blocked by inhibitors targeting all three initiator caspases. Cells expressing the IκB superrepessor were more susceptible than wild-type cells to TNF-α-induced apoptosis at 37°C, but HS and febrile-range hyperthermia still increased apoptosis in these cells. Delaying HS for 3 hours after TNF-α treatment abrogated its proapoptotic effect in wild-type cells, but not in IκB superrepressor-expression cells, suggesting that TNF-α stimulates delayed resistance to the proapoptotic effects of HS through an NF-κB-dependent mechanism. Pre-exposure to 2-hour HS beginning 6 to16 hours before TNF-α treatment or Fas activation reduced apoptosis in MLE15 cells. The antiapoptotic effects of HS pretreatment were reduced in TNF-α-treated embryonic fibroblasts from heat shock factor-1 (HSF1)-deficient mice, but the proapoptotic effects of concurrent HS were preserved. Thus, depending on the temperature and timing relative to death receptor activation, hyperthermia can exert pro- and antiapoptotic effects through distinct mechanisms.

摘要

热疗已被证实可提供细胞保护并增强不同实验模型中的细胞凋亡。我们在同一株小鼠肺上皮(MLE)细胞系(MLE15)中分析了这两种效应的机制。将 MLE15 细胞暴露于热休克(HS;42°C,2 小时)或发热范围的热疗(39.5°C)同时激活死亡受体 TNF 受体 1 或 Fas,可大大加速细胞凋亡,这在 30 分钟内即可检测到,并与 caspase-2、-8 和 -10 的快速激活以及促凋亡蛋白 Bcl2 相互作用域(Bid)相关。靶向所有三种起始半胱天冬酶的抑制剂部分阻断了 caspase-3 的激活和细胞死亡。与野生型细胞相比,表达 IκB 超级阻遏物的细胞在 37°C 时更容易受到 TNF-α诱导的凋亡,但 HS 和发热范围的热疗仍可增加这些细胞的凋亡。在 TNF-α处理后 3 小时延迟 HS 可消除其在野生型细胞中的促凋亡作用,但在 IκB 超级阻遏物表达细胞中则不会,这表明 TNF-α通过 NF-κB 依赖性机制刺激对 HS 的促凋亡作用的延迟抵抗。在 TNF-α处理或 Fas 激活前 6 至 16 小时开始进行 2 小时的 HS 预暴露可减少 MLE15 细胞中的凋亡。在 TNF-α处理的热休克因子-1(HSF1)缺陷型小鼠胚胎成纤维细胞中,HS 预处理的抗凋亡作用减少,但同时 HS 的促凋亡作用得以保留。因此,取决于与死亡受体激活的温度和时间关系,热疗可以通过不同的机制发挥促凋亡和抗凋亡作用。

相似文献

1
Hyperthermia promotes and prevents respiratory epithelial apoptosis through distinct mechanisms.
Am J Respir Cell Mol Biol. 2012 Dec;47(6):824-33. doi: 10.1165/rcmb.2012-0105OC. Epub 2012 Sep 6.
4
Activation of heat shock response augments fibroblast growth factor-1 expression in wounded lung epithelium.
Am J Physiol Lung Cell Mol Physiol. 2016 Nov 1;311(5):L941-L955. doi: 10.1152/ajplung.00262.2016. Epub 2016 Sep 16.
8
Heat shock co-activates interleukin-8 transcription.
Am J Respir Cell Mol Biol. 2008 Aug;39(2):235-42. doi: 10.1165/rcmb.2007-0294OC. Epub 2008 Mar 26.
10
NF-kappaB inactivation converts a hepatocyte cell line TNF-alpha response from proliferation to apoptosis.
Am J Physiol. 1998 Oct;275(4):C1058-66. doi: 10.1152/ajpcell.1998.275.4.C1058.

引用本文的文献

1
Association Between Temperature During Intensive Care Unit and Mortality in Patients With Acute Respiratory Distress Syndrome.
Ther Hypothermia Temp Manag. 2024 Dec;14(4):258-268. doi: 10.1089/ther.2023.0047. Epub 2023 Nov 17.
2
Moderate Fever Cycles as a Potential Mechanism to Protect the Respiratory System in COVID-19 Patients.
Front Med (Lausanne). 2020 Sep 11;7:564170. doi: 10.3389/fmed.2020.564170. eCollection 2020.
5
Exposure to febrile-range hyperthermia potentiates Wnt signalling and epithelial-mesenchymal transition gene expression in lung epithelium.
Int J Hyperthermia. 2018 Feb;34(1):1-10. doi: 10.1080/02656736.2017.1316875. Epub 2017 Apr 26.
6
Activation of heat shock response augments fibroblast growth factor-1 expression in wounded lung epithelium.
Am J Physiol Lung Cell Mol Physiol. 2016 Nov 1;311(5):L941-L955. doi: 10.1152/ajplung.00262.2016. Epub 2016 Sep 16.
7
Shifts in temperature within the physiologic range modify strand-specific expression of select human microRNAs.
RNA. 2015 Jul;21(7):1261-73. doi: 10.1261/rna.049122.114. Epub 2015 May 27.
9
Fever is associated with delayed ventilator liberation in acute lung injury.
Ann Am Thorac Soc. 2013 Dec;10(6):608-15. doi: 10.1513/AnnalsATS.201303-052OC.

本文引用的文献

1
Enhanced Hsp70 expression protects against acute lung injury by modulating apoptotic pathways.
PLoS One. 2011;6(11):e26956. doi: 10.1371/journal.pone.0026956. Epub 2011 Nov 23.
2
Antioxidant c-FLIP inhibits Fas ligand-induced NF-kappaB activation in a phosphatidylinositol 3-kinase/Akt-dependent manner.
J Immunol. 2011 Sep 15;187(6):3256-66. doi: 10.4049/jimmunol.1002915. Epub 2011 Aug 19.
4
5
The heat shock response: life on the verge of death.
Mol Cell. 2010 Oct 22;40(2):253-66. doi: 10.1016/j.molcel.2010.10.006.
7
DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis.
Oncogene. 2009 May 7;28(18):1949-59. doi: 10.1038/onc.2009.36. Epub 2009 Apr 6.
8
Febrile-range hyperthermia accelerates caspase-dependent apoptosis in human neutrophils.
J Immunol. 2008 Aug 15;181(4):2636-43. doi: 10.4049/jimmunol.181.4.2636.
9
Heat shock paradox and a new role of heat shock proteins and their receptors as anti-inflammation targets.
Inflamm Allergy Drug Targets. 2007 Jun;6(2):91-100. doi: 10.2174/187152807780832274.
10
Fever-like hyperthermia controls T Lymphocyte persistence by inducing degradation of cellular FLIPshort.
J Immunol. 2007 Mar 15;178(6):3944-53. doi: 10.4049/jimmunol.178.6.3944.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验