Center for Computational Biology, Beijing Forestry University, Beijing 100083, China.
Brief Bioinform. 2013 Nov;14(6):713-23. doi: 10.1093/bib/bbs047. Epub 2012 Sep 8.
Despite our expanding knowledge about the biochemistry of gene regulation involved in host-pathogen interactions, a quantitative understanding of this process at a transcriptional level is still limited. We devise and assess a computational framework that can address this question. This framework is founded on a mixture model-based likelihood, equipped with functionality to cluster genes per dynamic and functional changes of gene expression within an interconnected system composed of the host and pathogen. If genes from the host and pathogen are clustered in the same group due to a similar pattern of dynamic profiles, they are likely to be reciprocally co-evolving. If genes from the two organisms are clustered in different groups, this means that they experience strong host-pathogen interactions. The framework can test the rates of change for individual gene clusters during pathogenic infection and quantify their impacts on host-pathogen interactions. The framework was validated by a pathological study of poplar leaves infected by fungal Marssonina brunnea in which co-evolving and interactive genes that determine poplar-fungus interactions are identified. The new framework should find its wide application to studying host-pathogen interactions for any other interconnected systems.
尽管我们对宿主-病原体相互作用中涉及的基因调控的生物化学有了更多的了解,但在转录水平上对这一过程进行定量理解仍然有限。我们设计并评估了一个可以解决这个问题的计算框架。该框架基于基于混合模型的似然性,具有对宿主和病原体组成的互联系统中基因表达的动态和功能变化进行聚类的功能。如果宿主和病原体的基因由于相似的动态分布模式而聚类在同一组中,它们很可能是相互共同进化的。如果来自两个生物体的基因聚类在不同的组中,这意味着它们经历了强烈的宿主-病原体相互作用。该框架可以测试在致病感染过程中单个基因簇的变化率,并量化它们对宿主-病原体相互作用的影响。该框架通过对受真菌 Marssonina brunnea 感染的杨树叶片的病理研究得到了验证,其中确定了决定杨树-真菌相互作用的共同进化和相互作用基因。这个新的框架应该可以广泛应用于研究任何其他互联系统中的宿主-病原体相互作用。