Suppr超能文献

PARADIGM-SHIFT 使用通路影响分析预测多种癌症中突变的功能。

PARADIGM-SHIFT predicts the function of mutations in multiple cancers using pathway impact analysis.

机构信息

Department of Biomolecular Engineering and CBSE, University of California Santa Cruz, Santa Cruz, CA 95064, USA.

出版信息

Bioinformatics. 2012 Sep 15;28(18):i640-i646. doi: 10.1093/bioinformatics/bts402.

Abstract

MOTIVATION

A current challenge in understanding cancer processes is to pinpoint which mutations influence the onset and progression of disease. Toward this goal, we describe a method called PARADIGM-SHIFT that can predict whether a mutational event is neutral, gain-or loss-of-function in a tumor sample. The method uses a belief-propagation algorithm to infer gene activity from gene expression and copy number data in the context of a set of pathway interactions.

RESULTS

The method was found to be both sensitive and specific on a set of positive and negative controls for multiple cancers for which pathway information was available. Application to the Cancer Genome Atlas glioblastoma, ovarian and lung squamous cancer datasets revealed several novel mutations with predicted high impact including several genes mutated at low frequency suggesting the approach will be complementary to current approaches that rely on the prevalence of events to reach statistical significance.

AVAILABILITY

All source code is available at the github repository http:github.org/paradigmshift.

CONTACT

jstuart@soe.ucsc.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

理解癌症过程的一个当前挑战是精确定位哪些突变会影响疾病的发生和进展。为此,我们描述了一种称为 PARADIGM-SHIFT 的方法,该方法可以预测突变事件在肿瘤样本中是中性的、获得功能还是失去功能。该方法使用置信传播算法从基因表达和拷贝数数据中推断基因活性,这些数据是在一组通路相互作用的背景下进行的。

结果

该方法在一组具有通路信息的多种癌症的阳性和阴性对照中表现出较高的敏感性和特异性。在癌症基因组图谱胶质母细胞瘤、卵巢和肺鳞癌数据集上的应用揭示了一些具有高预测影响的新突变,包括一些低频突变的基因,这表明该方法将与目前依赖事件的普遍性来达到统计学意义的方法互补。

可用性

所有源代码均可在 github 存储库 http://github.org/paradigmshift 上获得。

联系人

jstuart@soe.ucsc.edu

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/663b/3436829/51759e0219a7/bts402f1.jpg

相似文献

1
PARADIGM-SHIFT predicts the function of mutations in multiple cancers using pathway impact analysis.
Bioinformatics. 2012 Sep 15;28(18):i640-i646. doi: 10.1093/bioinformatics/bts402.
2
Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM.
Bioinformatics. 2010 Jun 15;26(12):i237-45. doi: 10.1093/bioinformatics/btq182.
3
Inferring the paths of somatic evolution in cancer.
Bioinformatics. 2014 Sep 1;30(17):2456-63. doi: 10.1093/bioinformatics/btu319. Epub 2014 May 7.
4
Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE).
Bioinformatics. 2013 Nov 1;29(21):2757-64. doi: 10.1093/bioinformatics/btt471. Epub 2013 Aug 27.
5
Efficient methods for identifying mutated driver pathways in cancer.
Bioinformatics. 2012 Nov 15;28(22):2940-7. doi: 10.1093/bioinformatics/bts564. Epub 2012 Sep 14.
6
Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
Bioinformatics. 2017 Feb 15;33(4):483-490. doi: 10.1093/bioinformatics/btw662.
7
A weighted exact test for mutually exclusive mutations in cancer.
Bioinformatics. 2016 Sep 1;32(17):i736-i745. doi: 10.1093/bioinformatics/btw462.
8
OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes.
Bioinformatics. 2013 Sep 15;29(18):2238-44. doi: 10.1093/bioinformatics/btt395. Epub 2013 Jul 24.
9
An integrative somatic mutation analysis to identify pathways linked with survival outcomes across 19 cancer types.
Bioinformatics. 2016 Jun 1;32(11):1643-51. doi: 10.1093/bioinformatics/btv692. Epub 2015 Dec 3.
10
Unraveling the role of low-frequency mutated genes in breast cancer.
Bioinformatics. 2019 Jan 1;35(1):36-46. doi: 10.1093/bioinformatics/bty520.

引用本文的文献

2
MPAC: a computational framework for inferring pathway activities from multi-omic data.
bioRxiv. 2025 Mar 31:2024.06.15.599113. doi: 10.1101/2024.06.15.599113.
3
Unravelling cancer subtype-specific driver genes in single-cell transcriptomics data with CSDGI.
PLoS Comput Biol. 2023 Dec 14;19(12):e1011450. doi: 10.1371/journal.pcbi.1011450. eCollection 2023 Dec.
4
Integrative genetic and genomic networks identify microRNA associated with COPD and ILD.
Sci Rep. 2023 Aug 11;13(1):13076. doi: 10.1038/s41598-023-39751-w.
6
Mutational signatures representative transcriptomic perturbations in hepatocellular carcinoma.
Front Genet. 2022 Aug 23;13:970907. doi: 10.3389/fgene.2022.970907. eCollection 2022.
7
Identification of a Five-Gene Panel to Assess Prognosis for Gastric Cancer.
Biomed Res Int. 2022 Feb 9;2022:5593619. doi: 10.1155/2022/5593619. eCollection 2022.
8
Identification of driver genes based on gene mutational effects and network centrality.
BMC Bioinformatics. 2021 Sep 24;22(Suppl 3):457. doi: 10.1186/s12859-021-04377-0.
10
Pan-cancer analysis of somatic mutations in miRNA genes.
EBioMedicine. 2020 Nov;61:103051. doi: 10.1016/j.ebiom.2020.103051. Epub 2020 Oct 7.

本文引用的文献

1
Subtype and pathway specific responses to anticancer compounds in breast cancer.
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2724-9. doi: 10.1073/pnas.1018854108. Epub 2011 Oct 14.
2
Integrated genomic analyses of ovarian carcinoma.
Nature. 2011 Jun 29;474(7353):609-15. doi: 10.1038/nature10166.
3
Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel.
Am J Hum Genet. 2011 Apr 8;88(4):440-9. doi: 10.1016/j.ajhg.2011.03.004. Epub 2011 Mar 31.
4
Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM.
Bioinformatics. 2010 Jun 15;26(12):i237-45. doi: 10.1093/bioinformatics/btq182.
5
A human functional protein interaction network and its application to cancer data analysis.
Genome Biol. 2010;11(5):R53. doi: 10.1186/gb-2010-11-5-r53. Epub 2010 May 19.
6
A method and server for predicting damaging missense mutations.
Nat Methods. 2010 Apr;7(4):248-9. doi: 10.1038/nmeth0410-248.
7
Bioinformatic tools for identifying disease gene and SNP candidates.
Methods Mol Biol. 2010;628:307-19. doi: 10.1007/978-1-60327-367-1_17.
8
Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.
Nat Protoc. 2009;4(7):1073-81. doi: 10.1038/nprot.2009.86. Epub 2009 Jun 25.
9
Determinants of protein function revealed by combinatorial entropy optimization.
Genome Biol. 2007;8(11):R232. doi: 10.1186/gb-2007-8-11-r232.
10
Comment on "The consensus coding sequences of human breast and colorectal cancers".
Science. 2007 Sep 14;317(5844):1500. doi: 10.1126/science.1138764.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验