Suppr超能文献

一种用于癌症中互斥突变的加权精确检验。

A weighted exact test for mutually exclusive mutations in cancer.

作者信息

Leiserson Mark D M, Reyna Matthew A, Raphael Benjamin J

机构信息

Department of Computer Science and Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA.

出版信息

Bioinformatics. 2016 Sep 1;32(17):i736-i745. doi: 10.1093/bioinformatics/btw462.

Abstract

MOTIVATION

The somatic mutations in the pathways that drive cancer development tend to be mutually exclusive across tumors, providing a signal for distinguishing driver mutations from a larger number of random passenger mutations. This mutual exclusivity signal can be confounded by high and highly variable mutation rates across a cohort of samples. Current statistical tests for exclusivity that incorporate both per-gene and per-sample mutational frequencies are computationally expensive and have limited precision.

RESULTS

We formulate a weighted exact test for assessing the significance of mutual exclusivity in an arbitrary number of mutational events. Our test conditions on the number of samples with a mutation as well as per-event, per-sample mutation probabilities. We provide a recursive formula to compute P-values for the weighted test exactly as well as a highly accurate and efficient saddlepoint approximation of the test. We use our test to approximate a commonly used permutation test for exclusivity that conditions on per-event, per-sample mutation frequencies. However, our test is more efficient and it recovers more significant results than the permutation test. We use our Weighted Exclusivity Test (WExT) software to analyze hundreds of colorectal and endometrial samples from The Cancer Genome Atlas, which are two cancer types that often have extremely high mutation rates. On both cancer types, the weighted test identifies sets of mutually exclusive mutations in cancer genes with fewer false positives than earlier approaches.

AVAILABILITY AND IMPLEMENTATION

See http://compbio.cs.brown.edu/projects/wext for software.

CONTACT

braphael@cs.brown.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

驱动癌症发展的信号通路中的体细胞突变在肿瘤之间往往是相互排斥的,这为从大量随机的乘客突变中区分驱动突变提供了一个信号。这种相互排斥信号可能会因一组样本中高且高度可变的突变率而混淆。当前用于评估排他性的统计测试,同时纳入了每个基因和每个样本的突变频率,计算成本高昂且精度有限。

结果

我们制定了一种加权精确测试,用于评估任意数量突变事件中相互排斥性的显著性。我们的测试以发生突变的样本数量以及每个事件、每个样本的突变概率为条件。我们提供了一个递归公式来精确计算加权测试的P值,以及该测试的一个高度准确且高效的鞍点近似值。我们使用我们的测试来近似一种常用的基于每个事件、每个样本突变频率的排他性排列测试。然而,我们的测试更高效,并且比排列测试能得出更显著的结果。我们使用我们的加权排他性测试(WExT)软件分析了来自癌症基因组图谱的数百个结肠直肠癌和子宫内膜癌样本,这两种癌症类型通常具有极高的突变率。在这两种癌症类型中,加权测试识别出癌症基因中相互排斥的突变集,其假阳性比早期方法更少。

可用性和实现方式

软件见http://compbio.cs.brown.edu/projects/wext

联系方式

braphael@cs.brown.edu

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

4
Simultaneous identification of multiple driver pathways in cancer.同时鉴定癌症中的多个驱动途径。
PLoS Comput Biol. 2013;9(5):e1003054. doi: 10.1371/journal.pcbi.1003054. Epub 2013 May 23.
5
Modeling mutual exclusivity of cancer mutations.癌症突变互斥性建模。
PLoS Comput Biol. 2014 Mar 27;10(3):e1003503. doi: 10.1371/journal.pcbi.1003503. eCollection 2014 Mar.
7
TiMEx: a waiting time model for mutually exclusive cancer alterations.TiMEx:用于相互排斥的癌症改变的等待时间模型。
Bioinformatics. 2016 Apr 1;32(7):968-75. doi: 10.1093/bioinformatics/btv400. Epub 2015 Jul 9.
10
De novo discovery of mutated driver pathways in cancer.癌症中突变驱动途径的从头发现。
Genome Res. 2012 Feb;22(2):375-85. doi: 10.1101/gr.120477.111. Epub 2011 Jun 7.

引用本文的文献

本文引用的文献

2
A Symmetric Length-Aware Enrichment Test.一种对称的长度感知富集测试。
J Comput Biol. 2016 Jun;23(6):508-25. doi: 10.1089/cmb.2016.0038. Epub 2016 May 3.
5
TiMEx: a waiting time model for mutually exclusive cancer alterations.TiMEx:用于相互排斥的癌症改变的等待时间模型。
Bioinformatics. 2016 Apr 1;32(7):968-75. doi: 10.1093/bioinformatics/btv400. Epub 2015 Jul 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验