Suppr超能文献

心肌细胞外容积分数测绘,第 1 部分:自动测绘方法评估。

Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method.

机构信息

National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

J Cardiovasc Magn Reson. 2012 Sep 10;14(1):63. doi: 10.1186/1532-429X-14-63.

Abstract

BACKGROUND

Disturbances in the myocardial extracellular volume fraction (ECV), such as diffuse or focal myocardial fibrosis or edema, are hallmarks of heart disease. Diffuse ECV changes are difficult to assess or quantify with cardiovascular magnetic resonance (CMR) using conventional late gadolinium enhancement (LGE), or pre- or post-contrast T1-mapping alone. ECV measurement circumvents factors that confound T1-weighted images or T1-maps, and has been shown to correlate well with diffuse myocardial fibrosis. The goal of this study was to develop and evaluate an automated method for producing a pixel-wise map of ECV that would be adequately robust for clinical work flow.

METHODS

ECV maps were automatically generated from T1-maps acquired pre- and post-contrast calibrated by blood hematocrit. The algorithm incorporates correction of respiratory motion that occurs due to insufficient breath-holding and due to misregistration between breath-holds, as well as automated identification of the blood pool. Images were visually scored on a 5-point scale from non-diagnostic (1) to excellent (5).

RESULTS

The quality score of ECV maps was 4.23 ± 0.83 (m ± SD), scored for n=600 maps from 338 patients with 83% either excellent or good. Co-registration of the pre-and post-contrast images improved the image quality for ECV maps in 81% of the cases. ECV of normal myocardium was 25.4 ± 2.5% (m ± SD) using motion correction and co-registration values and was 31.5 ± 8.7% without motion correction and co-registration.

CONCLUSIONS

Fully automated motion correction and co-registration of breath-holds significantly improve the quality of ECV maps, thus making the generation of ECV-maps feasible for clinical work flow.

摘要

背景

心肌细胞外容积分数(ECV)的改变,如弥漫性或局灶性心肌纤维化或水肿,是心脏病的特征。使用传统的钆延迟增强(LGE)或单纯对比前或对比后 T1 映射,难以评估或量化弥漫性 ECV 改变。ECV 测量可避免混淆 T1 加权图像或 T1 图的因素,并且与弥漫性心肌纤维化密切相关。本研究的目的是开发和评估一种自动生成 ECV 像素图的方法,该方法对于临床工作流程具有足够的稳健性。

方法

ECV 图是从预对比和对比后经血液红细胞压积校准的 T1 图中自动生成的。该算法包括由于呼吸不足和呼吸暂停之间的配准错误而发生的呼吸运动的校正,以及自动识别血池。图像的质量评分采用 5 分制(1 分表示无法诊断,5 分表示极好)进行视觉评分。

结果

600 个来自 338 名患者的 ECV 图的质量评分为 4.23±0.83(m±SD),其中 83%的评分为极好或良好。对比前和对比后的图像配准改善了 81%的 ECV 图的图像质量。使用运动校正和配准值,正常心肌的 ECV 为 25.4±2.5%(m±SD),而不使用运动校正和配准时,ECV 为 31.5±8.7%。

结论

完全自动化的呼吸暂停运动校正和配准显著提高了 ECV 图的质量,从而使 ECV 图的生成可用于临床工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d935/3441905/6dc731d12129/1532-429X-14-63-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验