Center for Structural and Functional Materials, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, USA.
J Biomed Mater Res A. 2013 Apr;101(4):1059-68. doi: 10.1002/jbm.a.34409. Epub 2012 Sep 11.
Bioactivity is an important aspect that can be appropriately used to tune the cellular interactions occurring at the biomaterial-physiological interface. In this regard, we explore here the nano- or quantum-size effects of a highly dispersible nanostructured carbon present in the void space between the polymers chains (Nylon 6,6) in modulating the cellular functions when osteoblasts are seeded on biocompatible substrates. The filling-up of void space in polymer facilitates filopodia to access the extracellular matrix, enabling integrin receptors to bind to the artificial biomedical device, promoting cellular interactions. In this regard, the fundamental principles of materials processing and cellular biology were combined to elucidate the mechanism of cell-substrate interactions and the molecular machinery controlling the cell response. This is accomplished by investigating cell attachment, proliferation, and morphology, including cytomorphometry evaluation and quantitative assessment of prominent proteins, actin, vinculin, and fibronectin that are sensitive to cell-substrate interactions.
生物活性是一个重要的方面,可以适当地用于调节生物材料-生理界面处发生的细胞相互作用。在这方面,我们在这里探索了存在于聚合物链(尼龙 6,6)之间的空隙空间中的高度分散的纳米结构碳的纳米或量子尺寸效应对成骨细胞在生物相容性基底上接种时调节细胞功能的影响。聚合物中空隙空间的填充使丝状伪足能够接触细胞外基质,使整合素受体能够与人工生物医学设备结合,促进细胞相互作用。在这方面,将材料加工和细胞生物学的基本原则相结合,以阐明细胞-基底相互作用的机制和控制细胞反应的分子机制。这是通过研究细胞附着、增殖和形态来完成的,包括细胞形态计量学评估和对细胞-基底相互作用敏感的突出蛋白质、肌动蛋白、粘着斑蛋白和纤维连接蛋白的定量评估。