Department of Chemical Engineering, University of Louisville, Louisville, KY 40292, USA.
Nanoscale. 2012 Oct 21;4(20):6269-75. doi: 10.1039/c2nr32020g.
Here, we show that GaN nanowires (diameter <30 nm) can be used as strain relaxing substrates for the heteroepitaxial growth of stable In(x)Ga(1-x)N alloys of controlled composition and thickness. Thinner nanowires with their smaller interfacial area reduce the heteroepitaxial stress. Also, the limited adatom diffusion length scales on the thinner nanowires aid in reducing the kinetic segregation effects. In addition to being single crystal templates for heteroepitaxial growth, these thick single crystal overlayers on nanowire substrates can provide suitable architectures for photoelectrochemical applications. The stability and crystallinity of the In(x)Ga(1-x)N layers are preserved by the nanowires acting as compliant substrates. Photoelectrochemical water splitting requires In(x)Ga(1-x)N alloys with a 2.2-1.6 eV band gap (i.e. 0.45 < x < 0.65) and 150-200 nm film thickness for efficient light absorption and carrier generation. At such compositions, the In(x)Ga(1-x)N alloys are inherently unstable, the thickness-dependent stress builds up during the commonly employed heteroepitaxial growth methods, and adds to the instability causing phase segregation and property degradation. A dependence of the growth morphology on the GaN nanowire growth orientation was observed and a growth mechanism is presented for the observed orientation dependent growth on a-plane and c-plane GaN nanowires. Photoactivity of GaN and In(x)Ga(1-x)N films on GaN nanowires is also investigated which shows a distinct difference attributable to GaN and In(x)Ga(1-x)N, demonstrating the advantages of using nanowires as strain relaxing substrates.
在这里,我们展示了 GaN 纳米线(直径<30nm)可用作应变弛豫衬底,用于异质外延生长具有可控组成和厚度的稳定 In(x)Ga(1-x)N 合金。具有较小界面面积的更薄纳米线会降低异质外延应变。此外,在更薄的纳米线上,受限的吸附原子扩散长度会有助于减少动力学分凝效应。除了作为异质外延生长的单晶模板外,这些在纳米线衬底上的厚单晶覆盖层还可以为光电化学应用提供合适的结构。纳米线作为弹性衬底,可保持 In(x)Ga(1-x)N 层的稳定性和结晶性。光电化学水分解需要具有 2.2-1.6eV 带隙(即 0.45<x<0.65)和 150-200nm 薄膜厚度的 In(x)Ga(1-x)N 合金,以实现高效的光吸收和载流子产生。在这些组成下,In(x)Ga(1-x)N 合金本质上是不稳定的,在通常采用的异质外延生长方法中,厚度相关的应变会累积,从而导致相分离和性能退化的不稳定性增加。观察到生长形态对 GaN 纳米线生长方向的依赖性,并提出了在 a 面和 c 面 GaN 纳米线上观察到的定向依赖生长的生长机制。还研究了 GaN 和 In(x)Ga(1-x)N 薄膜在 GaN 纳米线上的光活性,其表现出明显的区别归因于 GaN 和 In(x)Ga(1-x)N,证明了使用纳米线作为应变弛豫衬底的优势。