Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
J Biol Chem. 2012 Nov 16;287(47):39524-37. doi: 10.1074/jbc.M112.390765. Epub 2012 Sep 11.
N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU), a bifunctional enzyme involved in bacterial cell wall synthesis is exclusive to prokaryotes. GlmU, now recognized as a promising target to develop new antibacterial drugs, catalyzes two key reactions: acetyl transfer and uridyl transfer at two independent domains. Hitherto, we identified GlmU from Mycobacterium tuberculosis (GlmU(Mtb)) to be unique in possessing a 30-residue extension at the C terminus. Here, we present the crystal structures of GlmU(Mtb) in complex with substrates/products bound at the acetyltransferase active site. Analysis of these and mutational data, allow us to infer a catalytic mechanism operative in GlmU(Mtb). In this S(N)2 reaction, His-374 and Asn-397 act as catalytic residues by enhancing the nucleophilicity of the attacking amino group of glucosamine 1-phosphate. Ser-416 and Trp-460 provide important interactions for substrate binding. A short helix at the C-terminal extension uniquely found in mycobacterial GlmU provides the highly conserved Trp-460 for substrate binding. Importantly, the structures reveal an uncommon mode of acetyl-CoA binding in GlmU(Mtb); we term this the U conformation, which is distinct from the L conformation seen in the available non-mycobacterial GlmU structures. Residues, likely determining U/L conformation, were identified, and their importance was evaluated. In addition, we identified that the primary site for PknB-mediated phosphorylation is Thr-418, near the acetyltransferase active site. Down-regulation of acetyltransferase activity upon Thr-418 phosphorylation is rationalized by the structures presented here. Overall, this work provides an insight into substrate recognition, catalytic mechanism for acetyl transfer, and features unique to GlmU(Mtb), which may be exploited for the development of inhibitors specific to GlmU.
N-乙酰氨基葡萄糖-1-磷酸尿苷酰转移酶(GlmU)是一种参与细菌细胞壁合成的双功能酶,仅存在于原核生物中。GlmU 现在被认为是开发新抗菌药物的有前途的靶标,它催化两个关键反应:在两个独立的结构域中进行乙酰转移和尿苷转移。迄今为止,我们从结核分枝杆菌(GlmU(Mtb))中鉴定出 GlmU,它在 C 末端具有 30 个残基的延伸,这是独特的。在这里,我们展示了 GlmU(Mtb)与结合在乙酰转移酶活性部位的底物/产物结合的复合物的晶体结构。对这些结构和突变数据的分析使我们能够推断出 GlmU(Mtb)中起作用的催化机制。在这个 S(N)2 反应中,His-374 和 Asn-397 作为催化残基,通过增强葡萄糖胺 1-磷酸攻击氨基的亲核性而起作用。Ser-416 和 Trp-460 为底物结合提供了重要的相互作用。在分枝杆菌 GlmU 中独特发现的 C 末端延伸的短螺旋为底物结合提供了高度保守的 Trp-460。重要的是,这些结构揭示了 GlmU(Mtb)中乙酰辅酶 A 结合的一种不常见模式;我们将其命名为 U 构象,与现有的非分枝杆菌 GlmU 结构中所见的 L 构象不同。确定了可能决定 U/L 构象的残基,并评估了它们的重要性。此外,我们还确定了 PknB 介导的磷酸化的主要位点是靠近乙酰转移酶活性部位的 Thr-418。 Thr-418 磷酸化后乙酰转移酶活性的下调可以通过这里呈现的结构来解释。总的来说,这项工作提供了对底物识别、乙酰转移催化机制以及 GlmU(Mtb)独特特征的深入了解,这些特征可能被用于开发针对 GlmU 的特异性抑制剂。