Suppr超能文献

生态位变异性及其对物种分布模型的影响。

Niche variability and its consequences for species distribution modeling.

机构信息

Department of Biology, Saint Louis University, St Louis, Missouri, United States of America.

出版信息

PLoS One. 2012;7(9):e44932. doi: 10.1371/journal.pone.0044932. Epub 2012 Sep 10.

Abstract

When species distribution models (SDMs) are used to predict how a species will respond to environmental change, an important assumption is that the environmental niche of the species is conserved over evolutionary time-scales. Empirical studies conducted at ecological time-scales, however, demonstrate that the niche of some species can vary in response to environmental change. We use habitat and locality data of five species of stream fishes collected across seasons to examine the effects of niche variability on the accuracy of projections from Maxent, a popular SDM. We then compare these predictions to those from an alternate method of creating SDM projections in which a transformation of the environmental data to similar scales is applied. The niche of each species varied to some degree in response to seasonal variation in environmental variables, with most species shifting habitat use in response to changes in canopy cover or flow rate. SDMs constructed from the original environmental data accurately predicted the occurrences of one species across all seasons and a subset of seasons for two other species. A similar result was found for SDMs constructed from the transformed environmental data. However, the transformed SDMs produced better models in ten of the 14 total SDMs, as judged by ratios of mean probability values at known presences to mean probability values at all other locations. Niche variability should be an important consideration when using SDMs to predict future distributions of species because of its prevalence among natural populations. The framework we present here may potentially improve these predictions by accounting for such variability.

摘要

当物种分布模型 (SDM) 用于预测物种对环境变化的反应时,一个重要的假设是物种的生态位在进化时间尺度上是保守的。然而,在生态时间尺度上进行的实证研究表明,一些物种的生态位可以响应环境变化而发生变化。我们使用五个溪流鱼类物种的栖息地和位置数据,这些数据是在不同季节收集的,以研究生态位可变性对 Maxent(一种流行的 SDM)预测精度的影响。然后,我们将这些预测与另一种创建 SDM 预测的替代方法进行比较,该方法对环境数据进行转换以达到相似的尺度。每个物种的生态位在一定程度上因环境变量的季节性变化而发生变化,大多数物种会根据冠层覆盖或流速的变化而改变栖息地利用。从原始环境数据构建的 SDM 准确地预测了一个物种在所有季节和另外两个物种的部分季节的出现情况。从转换后的环境数据构建的 SDM 也得到了类似的结果。然而,在 14 个总 SDM 中,有 10 个 SDM 的转换 SDM 产生了更好的模型,这可以通过已知存在位置的平均概率值与所有其他位置的平均概率值的比值来判断。由于自然种群中普遍存在生态位可变性,因此在使用 SDM 预测物种未来分布时,应将其作为一个重要因素加以考虑。我们在这里提出的框架可以通过考虑这种可变性来提高这些预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6e9/3438174/56ac24afaf7c/pone.0044932.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验