Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK.
Neural Comput. 2012 Dec;24(12):3181-90. doi: 10.1162/NECO_a_00373. Epub 2012 Sep 12.
Modulation of stimulus-response gain and stability of spontaneous (unstimulated) firing are both important for neural computation. However, biologically plausible mechanisms that allow these distinct functional capabilities to coexist in the same neuron are poorly defined. Low-threshold, inactivating (A-type) K(+) currents (I(A)) are found in many biological neurons and are historically known for enabling low-frequency firing. By performing simulations using a conductance-based model neuron, here we show that biologically plausible shifts in I(A) conductance and inactivation kinetics produce dissociated effects on gain and intrinsic firing. This enables I(A) to regulate gain without major changes in intrinsic firing rate. Tuning I(A) properties may thus represent a previously unsuspected single-current mechanism of silent gain control in neurons.
刺激反应增益的调节和自发(无刺激)放电的稳定性对于神经计算都很重要。然而,能够使这些不同的功能能力共存于同一神经元中的生物学上合理的机制还没有很好地定义。许多生物神经元中都存在低阈值失活(A 型)钾(K+)电流(I(A)),并且其历史上以允许低频放电而闻名。通过使用基于电导率的模型神经元进行模拟,我们在这里表明,I(A)电导率和失活动力学的生物学上合理的变化会对增益和内在放电产生分离的影响。这使得 I(A)能够在不改变固有放电率的情况下调节增益。因此,调节 I(A)特性可能代表了神经元中沉默增益控制的单一电流机制,这是以前没有预料到的。