Suppr超能文献

信息几何测度在相关输入下的连接权重估计中的应用。

Information-geometric measures for estimation of connection weight under correlated inputs.

机构信息

Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.

出版信息

Neural Comput. 2012 Dec;24(12):3213-45. doi: 10.1162/NECO_a_00367. Epub 2012 Sep 12.

Abstract

The brain processes information in a highly parallel manner. Determination of the relationship between neural spikes and synaptic connections plays a key role in the analysis of electrophysiological data. Information geometry (IG) has been proposed as a powerful analysis tool for multiple spike data, providing useful insights into the statistical interactions within a population of neurons. Previous work has demonstrated that IG measures can be used to infer the connection weight between two neurons in a neural network. This property is useful in neuroscience because it provides a way to estimate learning-induced changes in synaptic strengths from extracellular neuronal recordings. A previous study has shown, however, that this property would hold only when inputs to neurons are not correlated. Since neurons in the brain often receive common inputs, this would hinder the application of the IG method to real data. We investigated the two-neuron-IG measures in higher-order log-linear models to overcome this limitation. First, we mathematically showed that the estimation of uniformly connected synaptic weight can be improved by taking into account higher-order log-linear models. Second, we numerically showed that the estimation can be improved for more general asymmetrically connected networks. Considering the estimated number of the synaptic connections in the brain, we showed that the two-neuron IG measure calculated by the fourth- or fifth-order log-linear model would provide an accurate estimation of connection strength within approximately a 10% error. These studies suggest that the two-neuron IG measure with higher-order log-linear expansion is a robust estimator of connection weight even under correlated inputs, providing a useful analytical tool for real multineuronal spike data.

摘要

大脑以高度并行的方式处理信息。确定神经峰和突触连接之间的关系在分析电生理数据中起着关键作用。信息几何(IG)已被提出作为一种强大的多尖峰数据分析工具,为神经元群体内的统计相互作用提供了有用的见解。以前的工作表明,IG 度量可以用于推断神经网络中两个神经元之间的连接权重。这种特性在神经科学中很有用,因为它提供了一种从细胞外神经元记录中估计学习引起的突触强度变化的方法。然而,先前的一项研究表明,只有当神经元的输入不相关时,这种特性才成立。由于大脑中的神经元经常接收共同的输入,这将阻碍 IG 方法在实际数据中的应用。我们研究了高阶对数线性模型中的两神经元 IG 度量,以克服这一限制。首先,我们从数学上证明,通过考虑高阶对数线性模型,可以提高对均匀连接突触权重的估计。其次,我们通过数值表明,对于更一般的非对称连接网络,估计可以得到改善。考虑到大脑中估计的突触连接数量,我们表明,第四或第五阶对数线性模型计算的两神经元 IG 度量将在大约 10%的误差范围内提供连接强度的准确估计。这些研究表明,即使在相关输入的情况下,高阶对数线性扩展的两神经元 IG 度量也是连接权重的稳健估计器,为真实的多神经元尖峰数据提供了有用的分析工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验