Suppr超能文献

内源性产生的一氧化氮负责缺氧诱导的结肠癌细胞中 HIF-1α 的稳定。

Nitric oxide produced endogenously is responsible for hypoxia-induced HIF-1α stabilization in colon carcinoma cells.

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Chem Res Toxicol. 2012 Oct 15;25(10):2194-202. doi: 10.1021/tx300274a. Epub 2012 Sep 25.

Abstract

Hypoxia-inducible factor-1α (HIF-1α) is a critical regulator of cellular responses to hypoxia. Under normoxic conditions, the cellular HIF-1α level is regulated by hydroxylation by prolyl hydroxylases (PHDs), ubiquitylation, and proteasomal degradation. During hypoxia, degradation decreases, and its intracellular level is increased. Exogenously administered nitric oxide (NO)-donor drugs stabilize HIF-1α; thus, NO is suggested to mimic hypoxia. However, the role of low levels of endogenously produced NO generated during hypoxia in HIF-1α stabilization has not been defined. Here, we demonstrate that NO and reactive oxygen species (ROS) produced endogenously by human colon carcinoma HCT116 cells are responsible for HIF-1α accumulation in hypoxia. The antioxidant N-acetyl-L-cysteine (NAC) and NO synthase inhibitor N(G)-monomethyl L-arginine (L-NMMA) effectively reduced HIF-1α stabilization and decreased HIF-1α hydroxylation. These effects suggested that endogenous NO and ROS impaired PHD activity, which was confirmed by reversal of L-NMMA- and NAC-mediated effects in the presence of dimethyloxaloylglycine, a PHD inhibitor. Thiol reduction with dithiothreitol decreased HIF-1α stabilization in hypoxic cells, while dinitrochlorobenzene, which stabilizes S-nitrosothiols, favored its accumulation. This suggested that ROS- and NO-mediated HIF-1α stabilization involved S-nitrosation, which was confirmed by demonstrating increased S-nitrosation of PHD2 during hypoxia. Our results support a regulatory mechanism of HIF-1α during hypoxia in which endogenously generated NO and ROS promote inhibition of PHD2 activity, probably by its S-nitrosation.

摘要

缺氧诱导因子-1α(HIF-1α)是细胞对缺氧反应的关键调节因子。在常氧条件下,细胞 HIF-1α 水平受脯氨酰羟化酶(PHD)羟化、泛素化和蛋白酶体降解调节。在缺氧时,降解减少,其细胞内水平增加。外源性给予一氧化氮(NO)供体药物可稳定 HIF-1α;因此,NO 被认为模拟缺氧。然而,在缺氧期间内源性产生的低水平的 NO 对 HIF-1α 稳定的作用尚未确定。在这里,我们证明了人结肠癌细胞 HCT116 内源性产生的 NO 和活性氧(ROS)负责 HIF-1α 在缺氧时的积累。抗氧化剂 N-乙酰-L-半胱氨酸(NAC)和一氧化氮合酶抑制剂 N(G)-单甲基-L-精氨酸(L-NMMA)有效地减少了 HIF-1α 的稳定,并降低了 HIF-1α 的羟化。这些效应表明,内源性 NO 和 ROS 损害了 PHD 活性,这在 PHD 抑制剂二甲基乙二酰基甘氨酸存在的情况下,逆转了 L-NMMA 和 NAC 介导的作用得到证实。二硫苏糖醇的巯基还原降低了缺氧细胞中 HIF-1α 的稳定,而二硝基氯苯,稳定 S-亚硝基硫醇,有利于其积累。这表明 ROS 和 NO 介导的 HIF-1α 稳定涉及 S-亚硝化,这在缺氧期间 PHD2 的 S-亚硝化增加得到证实。我们的结果支持了 HIF-1α 在缺氧时的调节机制,其中内源性产生的 NO 和 ROS 促进 PHD2 活性的抑制,可能通过其 S-亚硝化。

相似文献

1
Nitric oxide produced endogenously is responsible for hypoxia-induced HIF-1α stabilization in colon carcinoma cells.
Chem Res Toxicol. 2012 Oct 15;25(10):2194-202. doi: 10.1021/tx300274a. Epub 2012 Sep 25.
2
Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2.
J Biol Chem. 2007 Jan 19;282(3):1788-96. doi: 10.1074/jbc.M607065200. Epub 2006 Oct 23.
3
NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species.
Free Radic Biol Med. 2005 Oct 1;39(7):925-36. doi: 10.1016/j.freeradbiomed.2005.05.009.
4
Oxygen-sensing under the influence of nitric oxide.
Cell Signal. 2010 Mar;22(3):349-56. doi: 10.1016/j.cellsig.2009.10.004.
8
Non-hypoxic activation of the negative regulatory feedback loop of prolyl-hydroxylase oxygen sensors.
Biochem Biophys Res Commun. 2009 Jul 10;384(4):519-23. doi: 10.1016/j.bbrc.2009.05.016. Epub 2009 May 8.
9
Nitric oxide reverses desferrioxamine- and hypoxia-evoked HIF-1alpha accumulation--implications for prolyl hydroxylase activity and iron.
Exp Cell Res. 2005 May 15;306(1):274-84. doi: 10.1016/j.yexcr.2005.02.018. Epub 2005 Mar 20.

引用本文的文献

1
Contribution and Regulation of HIF-1α in Testicular Injury Induced by Diabetes Mellitus.
Biomolecules. 2025 Aug 19;15(8):1190. doi: 10.3390/biom15081190.
3
Advances and prospects of RNA delivery nanoplatforms for cancer therapy.
Acta Pharm Sin B. 2025 Jan;15(1):52-96. doi: 10.1016/j.apsb.2024.09.009. Epub 2024 Sep 14.
6
Targeting Metabolic Pathways of Myeloid Cells Improves Cancer Immunotherapy.
Front Cell Dev Biol. 2021 Dec 20;9:747863. doi: 10.3389/fcell.2021.747863. eCollection 2021.
7
The Landscape of Interactions between Hypoxia-Inducible Factors and Reactive Oxygen Species in the Gastrointestinal Tract.
Oxid Med Cell Longev. 2021 Jan 21;2021:8893663. doi: 10.1155/2021/8893663. eCollection 2021.
9
A divergent mode of activation of a nitrosyl iron complex with unusual antiangiogenic activity.
J Inorg Biochem. 2020 Sep;210:111133. doi: 10.1016/j.jinorgbio.2020.111133. Epub 2020 Jun 20.
10
Microneedles for transdermal diagnostics: Recent advances and new horizons.
Biomaterials. 2020 Feb;232:119740. doi: 10.1016/j.biomaterials.2019.119740. Epub 2019 Dec 26.

本文引用的文献

3
Studies on the reaction of nitric oxide with the hypoxia-inducible factor prolyl hydroxylase domain 2 (EGLN1).
J Mol Biol. 2011 Jul 8;410(2):268-79. doi: 10.1016/j.jmb.2011.04.075. Epub 2011 May 13.
5
Nitric oxide activation of Keap1/Nrf2 signaling in human colon carcinoma cells.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14547-51. doi: 10.1073/pnas.0907539106. Epub 2009 Aug 11.
6
Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway.
Mol Cell. 2008 May 23;30(4):393-402. doi: 10.1016/j.molcel.2008.04.009.
7
Nitric oxide, apoptosis and macrophage polarization during tumor progression.
Nitric Oxide. 2008 Sep;19(2):95-102. doi: 10.1016/j.niox.2008.04.021. Epub 2008 Apr 29.
8
The chemical biology of nitric oxide: implications in cellular signaling.
Free Radic Biol Med. 2008 Jul 1;45(1):18-31. doi: 10.1016/j.freeradbiomed.2008.03.020. Epub 2008 Apr 4.
9
Role and regulation of prolyl hydroxylase domain proteins.
Cell Death Differ. 2008 Apr;15(4):635-41. doi: 10.1038/cdd.2008.10. Epub 2008 Feb 15.
10
HIF stabilizing agents: shotgun or scalpel?
Am J Physiol Lung Cell Mol Physiol. 2007 Sep;293(3):L555-6. doi: 10.1152/ajplung.00251.2007. Epub 2007 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验