Suppr超能文献

基于成像的肿瘤血管模拟随机模型。

An imaging-based stochastic model for simulation of tumour vasculature.

机构信息

Department of Physics, University of Wisconsin, Madison, WI, USA.

出版信息

Phys Med Biol. 2012 Oct 7;57(19):6103-24. doi: 10.1088/0031-9155/57/19/6103. Epub 2012 Sep 13.

Abstract

A mathematical model which reconstructs the structure of existing vasculature using patient-specific anatomical, functional and molecular imaging as input was developed. The vessel structure is modelled according to empirical vascular parameters, such as the mean vessel branching angle. The model is calibrated such that the resultant oxygen map modelled from the simulated microvasculature stochastically matches the input oxygen map to a high degree of accuracy (R(2) ≈ 1). The calibrated model was successfully applied to preclinical imaging data. Starting from the anatomical vasculature image (obtained from contrast-enhanced computed tomography), a representative map of the complete vasculature was stochastically simulated as determined by the oxygen map (obtained from hypoxia [(64)Cu]Cu-ATSM positron emission tomography). The simulated microscopic vasculature and the calculated oxygenation map successfully represent the imaged hypoxia distribution (R(2) = 0.94). The model elicits the parameters required to simulate vasculature consistent with imaging and provides a key mathematical relationship relating the vessel volume to the tissue oxygen tension. Apart from providing an excellent framework for visualizing the imaging gap between the microscopic and macroscopic imagings, the model has the potential to be extended as a tool to study the dynamics between the tumour and the vasculature in a patient-specific manner and has an application in the simulation of anti-angiogenic therapies.

摘要

开发了一种数学模型,该模型使用患者特定的解剖学、功能和分子成像作为输入来重建现有的脉管结构。根据经验性血管参数(例如平均血管分支角度)对血管结构进行建模。对模型进行校准,使得从模拟微血管中随机建模的氧图与输入氧图高度匹配(R²≈1)。该经过校准的模型已成功应用于临床前成像数据。从解剖血管图像(从对比度增强计算机断层扫描获得)开始,根据氧图(从缺氧[(64)Cu]Cu-ATSM 正电子发射断层扫描获得)随机模拟完整血管的代表性图谱。模拟的微血管和计算的氧合图成功地代表了成像的缺氧分布(R²=0.94)。该模型引出了与成像一致的模拟血管所需的参数,并提供了一个关键的数学关系,将血管体积与组织氧张力联系起来。除了为可视化微观和宏观成像之间的成像差距提供极好的框架外,该模型还有望扩展为一种工具,以特定于患者的方式研究肿瘤和血管之间的动态,并在模拟抗血管生成治疗方面具有应用。

相似文献

1
An imaging-based stochastic model for simulation of tumour vasculature.
Phys Med Biol. 2012 Oct 7;57(19):6103-24. doi: 10.1088/0031-9155/57/19/6103. Epub 2012 Sep 13.
2
An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics.
Phys Med Biol. 2016 May 21;61(10):3885-902. doi: 10.1088/0031-9155/61/10/3885. Epub 2016 Apr 27.
3
A model to simulate tumour oxygenation and dynamic [18F]-Fmiso PET data.
Phys Med Biol. 2006 Nov 21;51(22):5859-73. doi: 10.1088/0031-9155/51/22/009. Epub 2006 Oct 26.
5
Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia.
Phys Med Biol. 2003 Sep 7;48(17):2829-42. doi: 10.1088/0031-9155/48/17/307.
7
Simulation of tissue activity curves of (64)Cu-ATSM for sub-target volume delineation in radiotherapy.
Phys Med Biol. 2010 Feb 7;55(3):681-94. doi: 10.1088/0031-9155/55/3/009. Epub 2010 Jan 13.
8
Computational modelling of anti-angiogenic therapies based on multiparametric molecular imaging data.
Phys Med Biol. 2012 Oct 7;57(19):6079-101. doi: 10.1088/0031-9155/57/19/6079. Epub 2012 Sep 13.
9
Development of an in silico stochastic 4D model of tumor growth with angiogenesis.
Med Phys. 2017 Apr;44(4):1563-1576. doi: 10.1002/mp.12130. Epub 2017 Mar 22.
10
Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling.
Nucl Med Biol. 2011 Aug;38(6):771-80. doi: 10.1016/j.nucmedbio.2011.02.002. Epub 2011 May 5.

引用本文的文献

3
An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics.
Phys Med Biol. 2016 May 21;61(10):3885-902. doi: 10.1088/0031-9155/61/10/3885. Epub 2016 Apr 27.
4
PET-specific parameters and radiotracers in theoretical tumour modelling.
Comput Math Methods Med. 2015;2015:415923. doi: 10.1155/2015/415923. Epub 2015 Feb 19.

本文引用的文献

2
Applying a patient-specific bio-mathematical model of glioma growth to develop virtual [18F]-FMISO-PET images.
Math Med Biol. 2012 Mar;29(1):31-48. doi: 10.1093/imammb/dqr002. Epub 2011 May 11.
4
Development of an image-based model for capillary vasculature of retina.
Comput Methods Programs Biomed. 2011 Apr;102(1):35-46. doi: 10.1016/j.cmpb.2010.12.009. Epub 2011 Jan 28.
5
Molecular imaging with dynamic contrast-enhanced computed tomography.
Clin Radiol. 2010 Jul;65(7):549-56. doi: 10.1016/j.crad.2010.04.007.
6
Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system.
Ann Biomed Eng. 2010 May;38(5):1862-79. doi: 10.1007/s10439-010-9955-z. Epub 2010 Feb 17.
7
Current progress in patient-specific modeling.
Brief Bioinform. 2010 Jan;11(1):111-26. doi: 10.1093/bib/bbp049. Epub 2009 Dec 2.
8
The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment.
Diagn Interv Radiol. 2010 Sep;16(3):186-92. doi: 10.4261/1305-3825.DIR.2537-08.1. Epub 2009 Nov 2.
9
Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth.
J Theor Biol. 2009 Aug 7;259(3):405-22. doi: 10.1016/j.jtbi.2009.04.005. Epub 2009 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验