Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
Phys Med Biol. 2012 Oct 7;57(19):6079-101. doi: 10.1088/0031-9155/57/19/6079. Epub 2012 Sep 13.
Computational tumour models have emerged as powerful tools for the optimization of cancer therapies; ideally, these models should incorporate patient-specific imaging data indicative of therapeutic response. The purpose of this study was to develop a tumour modelling framework in order to simulate the therapeutic effects of anti-angiogenic agents based upon clinical molecular imaging data. The model was applied to positron emission tomography (PET) data of cellular proliferation and hypoxia from a phase I clinical trial of bevacizumab, an antibody that neutralizes the vascular endothelial growth factor (VEGF). When using pre-therapy PET data in combination with literature-based dose response parameters, simulated follow-up hypoxia data yielded good qualitative agreement with imaged hypoxia levels. Improving the quantitative agreement with follow-up hypoxia and proliferation PET data required tuning of the maximum vascular growth fraction (VGF(max)) and the tumour cell cycle time to patient-specific values. VGF(max) was found to be the most sensitive model parameter (CV = 22%). Assuming availability of patient-specific, intratumoural VEGF levels, we show how bevacizumab dose levels can potentially be 'tailored' to improve levels of tumour hypoxia while maintaining proliferative response, both of which are critically important in the context of combination therapy. Our results suggest that, upon further validation, the application of image-driven computational models may afford opportunities to optimize dosing regimens and combination therapies in a patient-specific manner.
计算肿瘤模型已成为优化癌症治疗的有力工具;理想情况下,这些模型应纳入表明治疗反应的患者特异性成像数据。本研究的目的是开发一种肿瘤建模框架,以便根据临床分子成像数据模拟抗血管生成剂的治疗效果。该模型应用于贝伐单抗(一种中和血管内皮生长因子(VEGF)的抗体)的 I 期临床试验中的细胞增殖和缺氧的正电子发射断层扫描(PET)数据。当使用治疗前 PET 数据并结合基于文献的剂量反应参数时,模拟的后续缺氧数据与成像的缺氧水平具有良好的定性一致性。要提高与后续缺氧和增殖 PET 数据的定量一致性,需要调整最大血管生长分数(VGF(max))和肿瘤细胞周期时间到患者特异性值。发现 VGF(max)是最敏感的模型参数(变异性 = 22%)。假设可获得患者特异性的肿瘤内 VEGF 水平,我们展示了如何根据贝伐单抗剂量水平有可能“定制”以提高肿瘤缺氧水平,同时保持增殖反应,这在联合治疗中都是至关重要的。我们的研究结果表明,在进一步验证后,应用图像驱动的计算模型可能为以患者特异性方式优化剂量方案和联合治疗提供机会。