Suppr超能文献

一种基于成像的计算模型,用于模拟血管生成和肿瘤氧合动力学。

An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics.

作者信息

Adhikarla Vikram, Jeraj Robert

机构信息

Department of Physics, University of Wisconsin, Madison, WI, USA. Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA.

出版信息

Phys Med Biol. 2016 May 21;61(10):3885-902. doi: 10.1088/0031-9155/61/10/3885. Epub 2016 Apr 27.

Abstract

Tumour growth, angiogenesis and oxygenation vary substantially among tumours and significantly impact their treatment outcome. Imaging provides a unique means of investigating these tumour-specific characteristics. Here we propose a computational model to simulate tumour-specific oxygenation changes based on the molecular imaging data. Tumour oxygenation in the model is reflected by the perfused vessel density. Tumour growth depends on its doubling time (T d) and the imaged proliferation. Perfused vessel density recruitment rate depends on the perfused vessel density around the tumour (sMVDtissue) and the maximum VEGF concentration for complete vessel dysfunctionality (VEGFmax). The model parameters were benchmarked to reproduce the dynamics of tumour oxygenation over its entire lifecycle, which is the most challenging test. Tumour oxygenation dynamics were quantified using the peak pO2 (pO2peak) and the time to peak pO2 (t peak). Sensitivity of tumour oxygenation to model parameters was assessed by changing each parameter by 20%. t peak was found to be more sensitive to tumour cell line related doubling time (30%) as compared to tissue vasculature density (10%). On the other hand, pO2peak was found to be similarly influenced by the above tumour- and vasculature-associated parameters (30-40%). Interestingly, both pO2peak and t peak were only marginally affected by VEGFmax (5%). The development of a poorly oxygenated (hypoxic) core with tumour growth increased VEGF accumulation, thus disrupting the vessel perfusion as well as further increasing hypoxia with time. The model with its benchmarked parameters, is applied to hypoxia imaging data obtained using a [(64)Cu]Cu-ATSM PET scan of a mouse tumour and the temporal development of the vasculature and hypoxia maps are shown. The work underscores the importance of using tumour-specific input for analysing tumour evolution. An extended model incorporating therapeutic effects can serve as a powerful tool for analysing tumour response to anti-angiogenic therapies.

摘要

肿瘤生长、血管生成和氧合在不同肿瘤之间存在显著差异,并对其治疗结果产生重大影响。成像为研究这些肿瘤特异性特征提供了独特的手段。在此,我们提出一种计算模型,基于分子成像数据模拟肿瘤特异性氧合变化。模型中的肿瘤氧合由灌注血管密度反映。肿瘤生长取决于其倍增时间(Td)和成像增殖情况。灌注血管密度招募率取决于肿瘤周围的灌注血管密度(sMVDtissue)以及导致血管完全功能障碍的最大VEGF浓度(VEGFmax)。对模型参数进行基准测试,以重现肿瘤在其整个生命周期内的氧合动态,这是最具挑战性的测试。使用峰值pO2(pO2peak)和达到峰值pO2的时间(t peak)对肿瘤氧合动态进行量化。通过将每个参数改变20%来评估肿瘤氧合对模型参数的敏感性。结果发现,与组织脉管系统密度(约10%)相比,t peak对肿瘤细胞系相关倍增时间更为敏感(约30%)。另一方面,发现pO2peak受上述肿瘤和脉管系统相关参数的影响类似(约30 - 40%)。有趣的是,pO2peak和t peak仅受到VEGFmax的轻微影响(约5%)。随着肿瘤生长,低氧(缺氧)核心的形成增加了VEGF积累,从而破坏血管灌注,并随着时间的推移进一步加剧缺氧。将具有基准参数的模型应用于使用[(64)Cu]Cu - ATSM PET扫描小鼠肿瘤获得的缺氧成像数据,并展示了脉管系统和缺氧图谱的时间演变。这项工作强调了使用肿瘤特异性输入来分析肿瘤演变的重要性。一个纳入治疗效果的扩展模型可作为分析肿瘤对抗血管生成疗法反应的有力工具。

相似文献

1
An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics.
Phys Med Biol. 2016 May 21;61(10):3885-902. doi: 10.1088/0031-9155/61/10/3885. Epub 2016 Apr 27.
2
Monitoring the effect of mild hyperthermia on tumour hypoxia by Cu-ATSM PET scanning.
Int J Hyperthermia. 2006 Mar;22(2):93-115. doi: 10.1080/02656730600594191.
3
A model to simulate tumour oxygenation and dynamic [18F]-Fmiso PET data.
Phys Med Biol. 2006 Nov 21;51(22):5859-73. doi: 10.1088/0031-9155/51/22/009. Epub 2006 Oct 26.
4
An imaging-based stochastic model for simulation of tumour vasculature.
Phys Med Biol. 2012 Oct 7;57(19):6103-24. doi: 10.1088/0031-9155/57/19/6103. Epub 2012 Sep 13.
6
Comparison of molecular markers of hypoxia and imaging with (60)Cu-ATSM in cancer of the uterine cervix.
Mol Imaging Biol. 2007 Sep-Oct;9(5):278-83. doi: 10.1007/s11307-007-0095-2.
7
Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia.
Phys Med Biol. 2003 Sep 7;48(17):2829-42. doi: 10.1088/0031-9155/48/17/307.
9
Simulation of tissue activity curves of (64)Cu-ATSM for sub-target volume delineation in radiotherapy.
Phys Med Biol. 2010 Feb 7;55(3):681-94. doi: 10.1088/0031-9155/55/3/009. Epub 2010 Jan 13.
10
Angiogenesis, hypoxia and VEGF expression during tumour growth in a human xenograft tumour model.
Microvasc Res. 2009 Mar;77(2):96-103. doi: 10.1016/j.mvr.2008.11.002. Epub 2008 Dec 7.

引用本文的文献

1
Anti-angiogenic therapy in ovarian cancer: Current understandings and prospects of precision medicine.
Front Pharmacol. 2023 Mar 7;14:1147717. doi: 10.3389/fphar.2023.1147717. eCollection 2023.

本文引用的文献

2
A phase I pharmacodynamic trial of sequential sunitinib with bevacizumab in patients with renal cell carcinoma and other advanced solid malignancies.
Cancer Chemother Pharmacol. 2014 Mar;73(3):485-93. doi: 10.1007/s00280-013-2373-9. Epub 2014 Jan 12.
3
Clinically relevant modeling of tumor growth and treatment response.
Sci Transl Med. 2013 May 29;5(187):187ps9. doi: 10.1126/scitranslmed.3005686.
4
A review of mathematical models for the formation of vascular networks.
J Theor Biol. 2013 Sep 21;333:174-209. doi: 10.1016/j.jtbi.2013.04.037. Epub 2013 May 16.
5
PET a tool for assessing the in vivo tumour cell and its microenvironment?
Br Med Bull. 2013;105:157-67. doi: 10.1093/bmb/lds041. Epub 2013 Jan 29.
7
Computational modelling of anti-angiogenic therapies based on multiparametric molecular imaging data.
Phys Med Biol. 2012 Oct 7;57(19):6079-101. doi: 10.1088/0031-9155/57/19/6079. Epub 2012 Sep 13.
8
An imaging-based stochastic model for simulation of tumour vasculature.
Phys Med Biol. 2012 Oct 7;57(19):6103-24. doi: 10.1088/0031-9155/57/19/6103. Epub 2012 Sep 13.
9
Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology.
Cancer Res. 2011 Dec 15;71(24):7366-75. doi: 10.1158/0008-5472.CAN-11-1399. Epub 2011 Sep 7.
10
Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions.
PLoS One. 2011 Apr 13;6(4):e14790. doi: 10.1371/journal.pone.0014790.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验