Suppr超能文献

层次非负矩阵分解(hNMF):一种使用 MRSI 进行多形性胶质母细胞瘤诊断的组织模式分化方法。

Hierarchical non-negative matrix factorization (hNMF): a tissue pattern differentiation method for glioblastoma multiforme diagnosis using MRSI.

机构信息

School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

NMR Biomed. 2013 Mar;26(3):307-19. doi: 10.1002/nbm.2850. Epub 2012 Sep 13.

Abstract

MRSI has shown potential in the diagnosis and prognosis of glioblastoma multiforme (GBM) brain tumors, but its use is limited by difficult data interpretation. When the analyzed MRSI data present more than two tissue patterns, conventional non-negative matrix factorization (NMF) implementation may lead to a non-robust estimation. The aim of this article is to introduce an effective approach for the differentiation of GBM tissue patterns using MRSI data. A hierarchical non-negative matrix factorization (hNMF) method that can blindly separate the most important spectral sources in short-TE ¹H MRSI data is proposed. This algorithm consists of several levels of NMF, where only two tissue patterns are computed at each level. The method is demonstrated on both simulated and in vivo short-TE ¹H MRSI data in patients with GBM. For the in vivo study, the accuracy of the recovered spectral sources was validated using expert knowledge. Results show that hNMF is able to accurately estimate the three tissue patterns present in the tumoral and peritumoral area of a GBM, i.e. normal, tumor and necrosis, thus providing additional useful information that can help in the diagnosis of GBM. Moreover, the hNMF results can be displayed as easily interpretable maps showing the contribution of each tissue pattern to each voxel.

摘要

MRSI 在多形性胶质母细胞瘤(GBM)脑肿瘤的诊断和预后中显示出了潜力,但由于数据解释困难,其应用受到限制。当分析的 MRSI 数据呈现出超过两种组织模式时,传统的非负矩阵分解(NMF)实现可能导致非稳健的估计。本文的目的是介绍一种使用 MRSI 数据区分 GBM 组织模式的有效方法。提出了一种层次非负矩阵分解(hNMF)方法,该方法可以盲目分离短 TE ¹H MRSI 数据中最重要的光谱源。该算法由几个 NMF 级别组成,每个级别仅计算两种组织模式。该方法在 GBM 患者的模拟和体内短 TE ¹H MRSI 数据上进行了验证。对于体内研究,使用专家知识验证了恢复的光谱源的准确性。结果表明,hNMF 能够准确估计 GBM 肿瘤和肿瘤周围区域中存在的三种组织模式,即正常、肿瘤和坏死,从而提供了有助于 GBM 诊断的额外有用信息。此外,hNMF 结果可以显示为易于解释的地图,显示每个组织模式对每个体素的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验