Suppr超能文献

通过工程设计理解免疫学:数学原型的作用。

Understanding immunology via engineering design: the role of mathematical prototyping.

机构信息

Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 25606, USA.

出版信息

Comput Math Methods Med. 2012;2012:676015. doi: 10.1155/2012/676015. Epub 2012 Sep 3.

Abstract

A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and "fitness for use," can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans.

摘要

免疫学的一个主要挑战是如何将数据转化为知识,因为人类生理学具有内在的复杂性和动态性。生理和工程界都有着丰富的历史,通过应用计算方法将从复杂系统中获得的数据转化为系统行为的知识。然而,不同学科在解决问题的方式上存在一些差异。通过将数学模型称为数学原型,我们旨在强调与过程(即原型制作)相关的方面,而不是与产品(即模型)相关的方面。本文的目的是回顾如何将两个相关的工程概念,即原型制作和“适用性”应用于克服将数据转化为可用于改善疾病治疗的基础免疫学知识的紧迫挑战。使用两个与免疫学相关的示例来说明这些概念。提出的原型集中在 1 型糖尿病发病时的β细胞质量和肺部树突状细胞的动力学上。本文旨在说明将数学建模应用于提高对人类疾病进展动态的理解时所涉及的一些细微差别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85d6/3438878/dbee9ee9dd4a/CMMM2012-676015.001.jpg

相似文献

1
Understanding immunology via engineering design: the role of mathematical prototyping.
Comput Math Methods Med. 2012;2012:676015. doi: 10.1155/2012/676015. Epub 2012 Sep 3.
2
Development, growth and maintenance of β-cell mass: models are also part of the story.
Mol Aspects Med. 2015 Apr;42:78-90. doi: 10.1016/j.mam.2015.01.005. Epub 2015 Feb 23.
3
Mathematical model of glucose-insulin homeostasis in healthy rats.
Math Biosci. 2013 Oct;245(2):269-77. doi: 10.1016/j.mbs.2013.07.017. Epub 2013 Aug 2.
5
Mathematical and computational challenges in population biology and ecosystems science.
Science. 1997 Jan 17;275(5298):334-43. doi: 10.1126/science.275.5298.334.
6
Computational medicine: translating models to clinical care.
Sci Transl Med. 2012 Oct 31;4(158):158rv11. doi: 10.1126/scitranslmed.3003528.
7
Systems immunology: a survey of modeling formalisms, applications and simulation tools.
Immunol Res. 2012 Sep;53(1-3):251-65. doi: 10.1007/s12026-012-8305-7.
8
Computational systems biology and dose-response modeling in relation to new directions in toxicity testing.
J Toxicol Environ Health B Crit Rev. 2010 Feb;13(2-4):253-76. doi: 10.1080/10937404.2010.483943.
10
The evolution of mathematical immunology.
Immunol Rev. 2007 Apr;216:9-20. doi: 10.1111/j.1600-065X.2006.00495.x.

本文引用的文献

2
Decisions about dendritic cells: past, present, and future.
Annu Rev Immunol. 2012;30:1-22. doi: 10.1146/annurev-immunol-100311-102839. Epub 2011 Nov 17.
3
Age-corrected beta cell mass following onset of type 1 diabetes mellitus correlates with plasma C-peptide in humans.
PLoS One. 2011;6(11):e26873. doi: 10.1371/journal.pone.0026873. Epub 2011 Nov 2.
4
A multi-cell, multi-scale model of vertebrate segmentation and somite formation.
PLoS Comput Biol. 2011 Oct;7(10):e1002155. doi: 10.1371/journal.pcbi.1002155. Epub 2011 Oct 6.
5
Timescale analysis of rule-based biochemical reaction networks.
Biotechnol Prog. 2012 Jan-Feb;28(1):33-44. doi: 10.1002/btpr.704. Epub 2011 Sep 26.
6
Quantitative events determine the differentiation and function of helper T cells.
Nat Immunol. 2011 Apr;12(4):288-94. doi: 10.1038/ni.2003.
8
New approaches to modeling complex biochemistry.
Nat Methods. 2011 Feb;8(2):130-1. doi: 10.1038/nmeth0211-130.
9
The Type 1 Diabetes PhysioLab Platform: a validated physiologically based mathematical model of pathogenesis in the non-obese diabetic mouse.
Clin Exp Immunol. 2010 Aug;161(2):250-67. doi: 10.1111/j.1365-2249.2010.04166.x. Epub 2010 May 18.
10
Inferring relevant control mechanisms for interleukin-12 signaling in naïve CD4+ T cells.
Immunol Cell Biol. 2011 Jan;89(1):100-10. doi: 10.1038/icb.2010.69. Epub 2010 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验