Suppr超能文献

生物医学中的第三次相遇:免疫学与数学和信息学相结合,走向定量与预测。

Third-Kind Encounters in Biomedicine: Immunology Meets Mathematics and Informatics to Become Quantitative and Predictive.

作者信息

Eberhardt Martin, Lai Xin, Tomar Namrata, Gupta Shailendra, Schmeck Bernd, Steinkasserer Alexander, Schuler Gerold, Vera Julio

机构信息

Laboratory of Systems Tumor Immunology, Department of Dermatology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

Department of Dermatology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.

出版信息

Methods Mol Biol. 2016;1386:135-79. doi: 10.1007/978-1-4939-3283-2_9.

Abstract

The understanding of the immune response is right now at the center of biomedical research. There are growing expectations that immune-based interventions will in the midterm provide new, personalized, and targeted therapeutic options for many severe and highly prevalent diseases, from aggressive cancers to infectious and autoimmune diseases. To this end, immunology should surpass its current descriptive and phenomenological nature, and become quantitative, and thereby predictive.Immunology is an ideal field for deploying the tools, methodologies, and philosophy of systems biology, an approach that combines quantitative experimental data, computational biology, and mathematical modeling. This is because, from an organism-wide perspective, the immunity is a biological system of systems, a paradigmatic instance of a multi-scale system. At the molecular scale, the critical phenotypic responses of immune cells are governed by large biochemical networks, enriched in nested regulatory motifs such as feedback and feedforward loops. This network complexity confers them the ability of highly nonlinear behavior, including remarkable examples of homeostasis, ultra-sensitivity, hysteresis, and bistability. Moving from the cellular level, different immune cell populations communicate with each other by direct physical contact or receiving and secreting signaling molecules such as cytokines. Moreover, the interaction of the immune system with its potential targets (e.g., pathogens or tumor cells) is far from simple, as it involves a number of attack and counterattack mechanisms that ultimately constitute a tightly regulated multi-feedback loop system. From a more practical perspective, this leads to the consequence that today's immunologists are facing an ever-increasing challenge of integrating massive quantities from multi-platforms.In this chapter, we support the idea that the analysis of the immune system demands the use of systems-level approaches to ensure the success in the search for more effective and personalized immune-based therapies.

摘要

对免疫反应的理解目前处于生物医学研究的核心位置。人们越来越期望基于免疫的干预措施在中期能为许多严重且高发的疾病提供新的、个性化的和有针对性的治疗选择,从侵袭性癌症到传染病和自身免疫性疾病。为此,免疫学应超越其当前描述性和现象学的性质,变得具有定量性,从而具有预测性。免疫学是应用系统生物学的工具、方法和理念的理想领域,系统生物学是一种将定量实验数据、计算生物学和数学建模相结合的方法。这是因为,从整个生物体的角度来看,免疫系统是一个系统的生物系统,是多尺度系统的典型实例。在分子尺度上,免疫细胞的关键表型反应由大型生化网络控制,这些网络富含嵌套的调节基序,如反馈和前馈回路。这种网络复杂性赋予它们高度非线性行为的能力,包括稳态、超敏感性、滞后和双稳态等显著例子。从细胞层面来看,不同的免疫细胞群体通过直接的物理接触或接收和分泌细胞因子等信号分子相互交流。此外,免疫系统与其潜在靶点(如病原体或肿瘤细胞)的相互作用远非简单,因为它涉及许多攻击和反击机制,最终构成一个严格调控的多反馈回路系统。从更实际的角度来看,这导致如今的免疫学家面临着整合来自多平台的大量数据的日益增加的挑战。在本章中,我们支持这样一种观点,即对免疫系统的分析需要使用系统层面的方法,以确保在寻找更有效和个性化的基于免疫的疗法方面取得成功。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验