Suppr超能文献

固相结合态 NMR 光谱揭示金黄色葡萄球菌肽聚糖的营养依赖性结构变化。

Nutrient-dependent structural changes in S. aureus peptidoglycan revealed by solid-state NMR spectroscopy.

机构信息

Department of Chemistry, Stanford University, Stanford, CA 94305, USA.

出版信息

Biochemistry. 2012 Oct 16;51(41):8143-53. doi: 10.1021/bi3012115. Epub 2012 Oct 2.

Abstract

The bacterial cell wall is essential to cell survival and is a major target of antibiotics. The main component of the bacterial cell wall is peptidoglycan, a cage-like macromolecule that preserves cellular integrity and maintains cell shape. The insolubility and heterogeneity of peptidoglycan pose a challenge to conventional structural analyses. Here we use solid-state NMR combined with specific isotopic labeling to probe a key structural feature of the Staphylococcus aureus peptidoglycan quantitatively and nondestructively. We observed that both the cell-wall morphology and the peptidoglycan structure are functions of growth stage in S. aureus synthetic medium (SASM). Specifically, S. aureus cells at stationary phase have thicker cell walls with nonuniformly thickened septa compared to cells in exponential phase, and remarkably, 12% (±2%) of the stems in their peptidoglycan do not have pentaglycine bridges attached. Mechanistically, we determined that these observations are triggered by the depletion of glycine in the nutrient medium, which is coincident with the start of the stationary phase, and that the production of the structurally altered peptidoglycan can be prevented by the addition of excess glycine. We also demonstrated that the structural changes primarily arise within newly synthesized peptidoglycan rather than through the modification of previously synthesized peptidoglycan. Collectively, our observations emphasize the plasticity in bacterial cell-wall assembly and the possibility to manipulate peptidoglycan structure with external stimuli.

摘要

细菌细胞壁对于细胞存活至关重要,也是抗生素的主要靶标。细菌细胞壁的主要成分是肽聚糖,它是一种笼状的大分子,能保持细胞的完整性并维持细胞的形状。肽聚糖的不溶性和异质性对传统的结构分析构成了挑战。在这里,我们使用固态 NMR 结合特定的同位素标记,对金黄色葡萄球菌肽聚糖的一个关键结构特征进行了定量和非破坏性探测。我们观察到,在金黄色葡萄球菌合成培养基(SASM)中,细胞壁形态和肽聚糖结构都是生长阶段的函数。具体来说,与处于指数生长期的细胞相比,处于静止期的金黄色葡萄球菌细胞的细胞壁更厚,隔膜不均匀增厚,而且令人惊讶的是,它们的肽聚糖中有 12%(±2%)的茎没有连接五肽桥。从机制上讲,我们确定这些观察结果是由营养培养基中甘氨酸的耗尽引发的,这与静止期的开始时间一致,而且通过添加过量的甘氨酸可以防止结构改变的肽聚糖的产生。我们还证明,这些结构变化主要发生在新合成的肽聚糖中,而不是通过对先前合成的肽聚糖进行修饰。总的来说,我们的观察结果强调了细菌细胞壁组装的可塑性,以及通过外部刺激来操纵肽聚糖结构的可能性。

相似文献

1
Nutrient-dependent structural changes in S. aureus peptidoglycan revealed by solid-state NMR spectroscopy.
Biochemistry. 2012 Oct 16;51(41):8143-53. doi: 10.1021/bi3012115. Epub 2012 Oct 2.
2
Staphylococcus aureus peptidoglycan tertiary structure from carbon-13 spin diffusion.
J Am Chem Soc. 2009 May 27;131(20):7023-30. doi: 10.1021/ja808971c.
3
Staphylococcus aureus peptidoglycan stem packing by rotational-echo double resonance NMR spectroscopy.
Biochemistry. 2013 May 28;52(21):3651-9. doi: 10.1021/bi4005039. Epub 2013 May 14.
4
Cross-link formation and peptidoglycan lattice assembly in the FemA mutant of Staphylococcus aureus.
Biochemistry. 2014 Mar 11;53(9):1420-7. doi: 10.1021/bi4016742. Epub 2014 Feb 26.
5
Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR.
Biochim Biophys Acta. 2015 Jan;1848(1 Pt B):350-62. doi: 10.1016/j.bbamem.2014.05.031. Epub 2014 Jun 8.
6
REDOR constraints on the peptidoglycan lattice architecture of Staphylococcus aureus and its FemA mutant.
Biochim Biophys Acta. 2015 Jan;1848(1 Pt B):363-8. doi: 10.1016/j.bbamem.2014.05.025. Epub 2014 Jun 2.
10
Two-site recognition of Staphylococcus aureus peptidoglycan by lysostaphin SH3b.
Nat Chem Biol. 2020 Jan;16(1):24-30. doi: 10.1038/s41589-019-0393-4. Epub 2019 Nov 4.

引用本文的文献

2
Next-generation membrane-active glycopeptide antibiotics that also inhibit bacterial cell division.
Chem Sci. 2023 Jan 6;14(9):2386-2398. doi: 10.1039/d2sc05600c. eCollection 2023 Mar 1.
3
Chemically Modified Bacterial Sacculi as a Vaccine Microparticle Scaffold.
ACS Chem Biol. 2022 May 20;17(5):1184-1196. doi: 10.1021/acschembio.2c00140. Epub 2022 Apr 12.
4
Deuterium Solid State NMR Studies of Intact Bacteria Treated With Antimicrobial Peptides.
Front Med Technol. 2021 Jan 11;2:621572. doi: 10.3389/fmedt.2020.621572. eCollection 2020.
5
Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants.
Chem Rev. 2022 May 25;122(10):10036-10086. doi: 10.1021/acs.chemrev.1c00669. Epub 2021 Dec 8.
7
Staphylococcus aureus cell wall structure and dynamics during host-pathogen interaction.
PLoS Pathog. 2021 Mar 31;17(3):e1009468. doi: 10.1371/journal.ppat.1009468. eCollection 2021 Mar.
8
Environmental Plasticity of the RNA Content of Extracellular Vesicles.
Front Microbiol. 2021 Mar 11;12:634226. doi: 10.3389/fmicb.2021.634226. eCollection 2021.
9
Single amino acid utilization for bacterial categorization.
Sci Rep. 2020 Jul 29;10(1):12686. doi: 10.1038/s41598-020-69686-5.

本文引用的文献

2
Architects at the bacterial surface - sortases and the assembly of pili with isopeptide bonds.
Nat Rev Microbiol. 2011 Mar;9(3):166-76. doi: 10.1038/nrmicro2520.
3
Peptidoglycan architecture can specify division planes in Staphylococcus aureus.
Nat Commun. 2010 Jun 15;1:26. doi: 10.1038/ncomms1025.
5
Architecture of peptidoglycan: more data and more models.
Trends Microbiol. 2010 Feb;18(2):59-66. doi: 10.1016/j.tim.2009.12.004. Epub 2010 Jan 8.
6
D-amino acids govern stationary phase cell wall remodeling in bacteria.
Science. 2009 Sep 18;325(5947):1552-5. doi: 10.1126/science.1178123.
7
Staphylococcus aureus peptidoglycan tertiary structure from carbon-13 spin diffusion.
J Am Chem Soc. 2009 May 27;131(20):7023-30. doi: 10.1021/ja808971c.
9
10
Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria.
FEMS Microbiol Rev. 2008 Mar;32(2):386-408. doi: 10.1111/j.1574-6976.2007.00097.x. Epub 2008 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验