Mérai Zsuzsanna, Benkovics Anna H, Nyikó Tünde, Debreczeny Mónika, Hiripi László, Kerényi Zoltán, Kondorosi Éva, Silhavy Dániel
Agricultural Biotechnology Center, Szent-Györgyi 4, H-2100, Gödöllő, Hungary.
Albert-Ludwigs-Universität Freiburg, Institut für Biologie II/Botanik, Schänzlestrasse 1, D-79104, Freiburg, Germany.
Plant J. 2013 Jan;73(1):50-62. doi: 10.1111/tpj.12015. Epub 2012 Oct 19.
Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that identifies and degrades mRNAs containing premature termination codons (PTCs). If translation terminates at a PTC, the UPF1 NMD factor binds the terminating ribosome and recruits UPF2 and UPF3 to form a functional NMD complex, which triggers the rapid decay of the PTC-containing transcript. Although NMD deficiency is seedling lethal in plants, the mechanism of plant NMD remains poorly understood. To understand how the formation of the NMD complex leads to transcript decay we functionally mapped the UPF1 and SMG7 plant NMD factors, the putative key players of NMD target degradation. Our data indicate that the cysteine-histidine-rich (CH) and helicase domains of UPF1 are only essential for the early steps of NMD, whereas the heavily phosphorylated N- and C-terminal regions play a redundant but essential role in the target transcript degradation steps of NMD. We also show that both the N- and the C-terminal regions of SMG7 are essential for NMD. The N terminus contains a phosphoserine-binding domain that is required for the early steps of NMD, whereas the C terminus is required to trigger the degradation of NMD target transcripts. Moreover, SMG7 is a P-body component that can also remobilize UPF1 from the cytoplasm into processing bodies (P bodies). We propose that the N- and C-terminal phosphorylated regions of UPF1 recruit SMG7 to the functional NMD complex, and then SMG7 transports the PTC-containing transcripts into P bodies for degradation.
无义介导的mRNA降解(NMD)是一种真核生物质量控制系统,可识别并降解含有提前终止密码子(PTC)的mRNA。如果翻译在PTC处终止,UPF1 NMD因子会结合终止核糖体并招募UPF2和UPF3形成功能性NMD复合体,从而触发含PTC转录本的快速降解。尽管NMD缺陷在植物幼苗期是致死性的,但植物NMD的机制仍知之甚少。为了了解NMD复合体的形成如何导致转录本降解,我们对UPF1和SMG7这两种植物NMD因子进行了功能定位,它们被认为是NMD靶标降解的关键参与者。我们的数据表明,UPF1富含半胱氨酸 - 组氨酸的(CH)结构域和解旋酶结构域仅对NMD的早期步骤至关重要,而高度磷酸化的N端和C端区域在NMD的靶标转录本降解步骤中发挥冗余但必不可少的作用。我们还表明,SMG7的N端和C端区域对NMD都是必不可少的。N端包含一个磷酸丝氨酸结合结构域,这是NMD早期步骤所必需的,而C端则是触发NMD靶标转录本降解所必需的。此外,SMG7是P小体的一个组成部分,它还可以将UPF1从细胞质重新转运到加工小体(P小体)中。我们提出,UPF1的N端和C端磷酸化区域将SMG7招募到功能性NMD复合体中,然后SMG7将含PTC的转录本转运到P小体中进行降解。