LPMCN, UMR 5586 Université Lyon 1 et CNRS, F-69622 Villeurbanne, France.
Langmuir. 2012 Oct 9;28(40):14261-72. doi: 10.1021/la3029403. Epub 2012 Sep 26.
In this work, we perform a theoretical study of liquid flow in graphitic nanopores of different sizes and geometries. Molecular dynamics flow simulations of different liquids (water, decane, ethanol, and OMCTS) in carbon nanotubes (CNT) are shown to exhibit flow velocities 1-3 orders of magnitude higher than those predicted from the continuum hydrodynamics framework and the no-slip boundary condition. These results support previous experimental findings obtained by several groups that reported exceptionally high liquid flow rates in CNT membranes. The liquid/graphite friction coefficient is identified as the crucial parameter for this fast mass transport in CNT. The friction coefficient is found to be very sensitive to wall curvature: friction is independent of confinement for liquids between flat graphene walls with zero curvature, whereas it decreases with increasing positive curvature (liquid inside CNT), and it increases with increasing negative curvature (liquid outside CNT). Furthermore, we present a theoretical approximate expression for the friction coefficient, which predicts qualitatively and semiquantitatively its curvature dependent behavior. The proposed theoretical description, which works well for different kinds of liquids (alcohols, alkanes, and water), sheds light on the physical mechanisms at the origin of the ultra low liquid/solid friction in CNT. In fact, it is due to their perfectly ordered molecular structure and their atomically smooth surface that carbon nanotubes are quasiperfect liquid conductors compared to other membrane pores like nanochannels in amorphous silica.
在这项工作中,我们对不同尺寸和几何形状的石墨纳米孔中的液体流动进行了理论研究。对不同液体(水、癸烷、乙醇和 OMCTS)在碳纳米管(CNT)中的分子动力学流动模拟表明,其流动速度比连续流体动力学框架和无滑移边界条件预测的速度高出 1-3 个数量级。这些结果支持了几个小组之前的实验发现,这些小组报告称 CNT 膜中的液体流速异常高。液体/石墨摩擦系数被确定为 CNT 中快速质量传递的关键参数。发现摩擦系数对壁曲率非常敏感:对于具有零曲率的平坦石墨烯壁之间的液体,摩擦与限制无关,而对于正曲率(CNT 内部的液体),摩擦随着曲率的增加而减小,而对于负曲率(CNT 外部的液体),摩擦随着曲率的增加而增加。此外,我们提出了一个摩擦系数的理论近似表达式,该表达式定性且半定量地预测了其曲率相关行为。所提出的理论描述适用于不同种类的液体(醇、烷烃和水),阐明了 CNT 中超低液体/固体摩擦的物理机制。事实上,与其他膜孔(如无定形二氧化硅中的纳米通道)相比,由于其完美有序的分子结构和原子级光滑的表面,碳纳米管几乎是完美的液体导体。