Suppr超能文献

纳米水流中涨落诱导的量子摩擦。

Fluctuation-induced quantum friction in nanoscale water flows.

机构信息

Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.

Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA.

出版信息

Nature. 2022 Feb;602(7895):84-90. doi: 10.1038/s41586-021-04284-7. Epub 2022 Feb 2.

Abstract

The flow of water in carbon nanochannels has defied understanding thus far, with accumulating experimental evidence for ultra-low friction, exceptionally high water flow rates and curvature-dependent hydrodynamic slippage. In particular, the mechanism of water-carbon friction remains unknown, with neither current theories nor classical or ab initio molecular dynamics simulations providing satisfactory rationalization for its singular behaviour. Here we develop a quantum theory of the solid-liquid interface, which reveals a new contribution to friction, due to the coupling of charge fluctuations in the liquid to electronic excitations in the solid. We expect that this quantum friction, which is absent in Born-Oppenheimer molecular dynamics, is the dominant friction mechanism for water on carbon-based materials. As a key result, we demonstrate a marked difference in quantum friction between the water-graphene and water-graphite interface, due to the coupling of water Debye collective modes with a thermally excited plasmon specific to graphite. This suggests an explanation for the radius-dependent slippage of water in carbon nanotubes, in terms of the electronic excitations of the nanotubes. Our findings open the way for quantum engineering of hydrodynamic flows through the electronic properties of the confining wall.

摘要

迄今为止,碳纳米通道中的水流一直难以理解,越来越多的实验证据表明其具有超低摩擦、极高的水流速度和曲率相关的流体动力滑移。特别是,水-碳摩擦的机制仍然未知,当前的理论以及经典或从头算分子动力学模拟都无法对其奇异行为提供令人满意的解释。在这里,我们发展了一种固-液界面的量子理论,该理论揭示了一种新的摩擦贡献,源于液体中的电荷涨落与固体中的电子激发的耦合。我们预计,这种在 Born-Oppenheimer 分子动力学中不存在的量子摩擦是水在基于碳的材料上的主要摩擦机制。作为一个关键结果,我们证明了水-石墨烯和水-石墨界面之间的量子摩擦存在显著差异,这是由于水的德拜集体模式与石墨特有的热激发等离子体耦合所致。这为碳纳米管中水分子的半径相关滑移提供了一种解释,即纳米管的电子激发。我们的发现为通过限制壁的电子特性来对流体动力学流动进行量子工程开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验