Suppr超能文献

耳蜗力学:振动测量法与光学相干断层扫描技术带来的新见解

Cochlear mechanics: new insights from vibrometry and Optical Coherence Tomography.

作者信息

Olson Elizabeth S, Strimbu C Elliott

机构信息

Department of Otolaryngolgy Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 W 168th St, New York, NY 10032.

Department Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue,New York, NY 10027.

出版信息

Curr Opin Physiol. 2020 Dec;18:56-62. doi: 10.1016/j.cophys.2020.08.022. Epub 2020 Sep 5.

Abstract

The cochlea is a complex biological machine that transduces sound-induced mechanical vibrations to neural signals. Hair cells within the sensory tissue of the cochlea transduce vibrations into electrical signals, and exert electromechanical feedback that enhances the passive frequency separation provided by the cochlea's traveling wave mechanics; this enhancement is termed cochlear amplification. The vibration of the sensory tissue has been studied with many techniques, and the current state of the art is optical coherence tomography (OCT). The OCT technique allows for motion of intra-organ structures to be measured at many layers within the sensory tissue, at several angles and in previously under-explored species. OCT-based observations are already impacting our understanding of hair cell excitation and cochlear amplification.

摘要

耳蜗是一个复杂的生物机器,它将声音引起的机械振动转化为神经信号。耳蜗感觉组织内的毛细胞将振动转化为电信号,并施加机电反馈,增强耳蜗行波机制提供的被动频率分离;这种增强被称为耳蜗放大。人们已经用多种技术研究了感觉组织的振动,目前的技术水平是光学相干断层扫描(OCT)。OCT技术能够在感觉组织内的多个层面、几个角度以及以前未充分研究的物种中测量器官内结构的运动。基于OCT的观察已经影响了我们对毛细胞兴奋和耳蜗放大的理解。

相似文献

1
Cochlear mechanics: new insights from vibrometry and Optical Coherence Tomography.
Curr Opin Physiol. 2020 Dec;18:56-62. doi: 10.1016/j.cophys.2020.08.022. Epub 2020 Sep 5.
3
Organ of Corti vibration within the intact gerbil cochlea measured by volumetric optical coherence tomography and vibrometry.
J Neurophysiol. 2018 Dec 1;120(6):2847-2857. doi: 10.1152/jn.00702.2017. Epub 2018 Oct 3.
4
Optical Coherence Tomography to Measure Sound-Induced Motions Within the Mouse Organ of Corti In Vivo.
Methods Mol Biol. 2016;1427:449-62. doi: 10.1007/978-1-4939-3615-1_24.
5
Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3128-33. doi: 10.1073/pnas.1500038112. Epub 2015 Mar 3.
6
Interactions between Passive and Active Vibrations in the Organ of Corti In Vitro.
Biophys J. 2020 Jul 21;119(2):314-325. doi: 10.1016/j.bpj.2020.06.011. Epub 2020 Jun 17.
8
Organ of Corti vibrations are dominated by longitudinal motion in vivo.
Commun Biol. 2022 Nov 24;5(1):1285. doi: 10.1038/s42003-022-04234-7.
9
In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography.
Biomed Opt Express. 2013 Feb 1;4(2):230-40. doi: 10.1364/BOE.4.00230. Epub 2013 Jan 15.
10
Time-domain analysis of a three-dimensional numerical model of the human spiral cochlea at medium intensity.
Comput Biol Med. 2021 Sep;136:104756. doi: 10.1016/j.compbiomed.2021.104756. Epub 2021 Aug 8.

引用本文的文献

2
Imaging the human cochlea using 1.3-m and 1.7-m optical coherence tomography.
J Biomed Opt. 2025 Apr;30(4):046007. doi: 10.1117/1.JBO.30.4.046007. Epub 2025 Apr 17.
3
4
On the phase consistency of apical organ of Corti vibrations.
Hear Res. 2024 Dec;454:109137. doi: 10.1016/j.heares.2024.109137. Epub 2024 Oct 28.
6
The Relevance of Autophagy within Inner Ear in Baseline Conditions and Tinnitus-Related Syndromes.
Int J Mol Sci. 2023 Nov 23;24(23):16664. doi: 10.3390/ijms242316664.
7
Linear mixed-effect modeling of organ of Corti vibratory tuning curves.
Hear Res. 2023 Aug;435:108820. doi: 10.1016/j.heares.2023.108820. Epub 2023 Jun 1.
8
The Remarkable Outer Hair Cell: Proceedings of a Symposium in Honour of W. E. Brownell.
J Assoc Res Otolaryngol. 2023 Apr;24(2):117-127. doi: 10.1007/s10162-022-00852-4. Epub 2023 Jan 17.
10
Automated classification of otitis media with OCT: augmenting pediatric image datasets with gold-standard animal model data.
Biomed Opt Express. 2022 May 26;13(6):3601-3614. doi: 10.1364/BOE.453536. eCollection 2022 Jun 1.

本文引用的文献

1
Interactions between Passive and Active Vibrations in the Organ of Corti In Vitro.
Biophys J. 2020 Jul 21;119(2):314-325. doi: 10.1016/j.bpj.2020.06.011. Epub 2020 Jun 17.
2
The frequency limit of outer hair cell motility measured in vivo.
Elife. 2019 Sep 24;8:e47667. doi: 10.7554/eLife.47667.
3
Nonlinearity and amplification in cochlear responses to single and multi-tone stimuli.
Hear Res. 2019 Jun;377:271-281. doi: 10.1016/j.heares.2019.04.001. Epub 2019 Apr 11.
4
LMO7 deficiency reveals the significance of the cuticular plate for hearing function.
Nat Commun. 2019 Mar 8;10(1):1117. doi: 10.1038/s41467-019-09074-4.
5
Scanning optical coherence tomography probe for in vivo imaging and displacement measurements in the cochlea.
Biomed Opt Express. 2019 Feb 1;10(2):1032-1043. doi: 10.1364/BOE.10.001032.
6
A Bundle of Mechanisms: Inner-Ear Hair-Cell Mechanotransduction.
Trends Neurosci. 2019 Mar;42(3):221-236. doi: 10.1016/j.tins.2018.12.006. Epub 2019 Jan 17.
8
Unusual mechanical processing of sounds at the apex of the Guinea pig cochlea.
Hear Res. 2018 Dec;370:84-93. doi: 10.1016/j.heares.2018.09.009. Epub 2018 Oct 2.
9
Organ of Corti vibration within the intact gerbil cochlea measured by volumetric optical coherence tomography and vibrometry.
J Neurophysiol. 2018 Dec 1;120(6):2847-2857. doi: 10.1152/jn.00702.2017. Epub 2018 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验