Suppr超能文献

分层质量几何形状:一种在 Geant4 近距离放射治疗模拟中将种子和施源器叠加到患者几何形状上的新技术。

Layered mass geometry: a novel technique to overlay seeds and applicators onto patient geometry in Geant4 brachytherapy simulations.

机构信息

Département de Radio-Oncologie et Centre de Recherche en Cancérologie, Université Laval, CHUQ Pavillon L'Hôtel-Dieu de Québec, Québec G1R 2J6, Canada.

出版信息

Phys Med Biol. 2012 Oct 7;57(19):6269-77. doi: 10.1088/0031-9155/57/19/6269. Epub 2012 Sep 14.

Abstract

A problem faced by all Monte Carlo (MC) particle transport codes is how to handle overlapping geometries. The Geant4 MC toolkit allows the user to create parallel geometries within a single application. In Geant4 the standard mass-containing geometry is defined in a simulation volume called the World Volume. Separate parallel geometries can be defined in parallel worlds, that is, alternate three dimensional simulation volumes that share the same coordinate system with the World Volume for geometrical event biasing, scoring of radiation interactions, and/or the creation of hits in detailed readout structures. Until recently, only one of those worlds could contain mass so these parallel worlds provided no solution to simplify a complex geometric overlay issue in brachytherapy, namely the overlap of radiation sources and applicators with a CT based patient geometry. The standard method to handle seed and applicator overlay in MC requires removing CT voxels whose boundaries would intersect sources, placing the sources into the resulting void and then backfilling the remaining space of the void with a relevant material. The backfilling process may degrade the accuracy of patient representation, and the geometrical complexity of the technique precludes using fast and memory-efficient coding techniques that have been developed for regular voxel geometries. The patient must be represented by the less memory and CPU-efficient Geant4 voxel placement technique, G4PVPlacement, rather than the more efficient G4NestedParameterization (G4NestedParam). We introduce for the first time a Geant4 feature developed to solve this issue: Layered Mass Geometry (LMG) whereby both the standard (CT based patient geometry) and the parallel world (seeds and applicators) may now have mass. For any area where mass is present in the parallel world, the parallel mass is used. Elsewhere, the mass of the standard world is used. With LMG the user no longer needs to remove patient CT voxels that would include for example seeds. The patient representation can be a regular voxel grid, conducive to G4NestedParam, and the patient CT derived materials remain exact, avoiding the inaccuracy of the backfilling technique. Post-implant dosimetry for one patient with (125)I permanent seed implant was performed using Geant4 version 9.5.p01 using three different geometrical techniques. The first technique was the standard described above (G4PVPlacement). The second technique placed patient voxels as before, but placed seeds with LMG (G4PVPlacement+LMG). The third technique placed patient voxels through G4NestedParam and seeds through LMG (G4NestedParam+LMG). All the scenarios were calculated with 3 different image compression factors to manipulate the number of voxels. Additionally, the dosimetric impact of the backfilling technique was investigated for the case of calcifications in close proximity of sources. LMG eliminated the need for backfilling and simplified geometry description. Of the two LMG techniques, G4PVPlacement+LMG had no benefit to calculation time or memory use, actually increasing calculation time, but G4NestedParam+LMG reduced both calculation time and memory. The benefits of G4NestedParam+LMG over standard G4PVPlacement increased with increasing voxel numbers. For the case of calcifications in close proximity to sources, LMG not only increased efficiency but also yielded more accurate dose calculation than G4PVPlacement. G4NestedParam in combination with LMG present a new, efficient approach to simulate radiation sources that overlap patient geometry. Cases with brachytherapy applicators would constitute a direct extension of the method.

摘要

所有蒙特卡罗(MC)粒子输运代码都面临的一个问题是如何处理重叠几何形状。Geant4 MC 工具包允许用户在单个应用程序中创建并行几何形状。在 Geant4 中,标准的包含质量的几何形状定义在一个称为 World Volume 的模拟体积中。可以在平行世界中定义单独的并行几何形状,即共享 World Volume 的相同坐标系的替代三维模拟体积,用于几何事件偏差、辐射相互作用的评分以及/或在详细读出结构中创建命中。直到最近,只有一个世界可以包含质量,因此这些并行世界无法解决近距离治疗中复杂的几何叠加问题,即放射源和施源器与基于 CT 的患者几何形状的重叠。在 MC 中处理种子和施源器叠加的标准方法需要移除其边界将与源相交的 CT 体素,将源放置在生成的空洞中,然后用相关材料填充空洞的剩余空间。回填过程可能会降低患者表示的准确性,并且该技术的几何复杂性排除了使用已经为常规体素几何形状开发的快速且节省内存的编码技术。患者必须由内存和 CPU 效率较低的 Geant4 体素放置技术 G4PVPlacement 表示,而不是更有效的 G4NestedParameterization(G4NestedParam)。我们首次引入了为解决此问题而开发的 Geant4 功能:分层质量几何形状(LMG),由此标准(基于 CT 的患者几何形状)和并行世界(种子和施源器)现在都可以具有质量。在并行世界中存在质量的任何区域中,都将使用并行质量。在其他地方,将使用标准世界的质量。使用 LMG,用户不再需要移除例如包含种子的患者 CT 体素。患者表示可以是规则的体素网格,有利于 G4NestedParam,并且患者 CT 衍生材料保持准确,避免回填技术的不准确性。使用 Geant4 版本 9.5.p01 对一名(125)I 永久性种子植入患者进行了植入后剂量学计算,使用了三种不同的几何技术。第一种技术是上述标准技术(G4PVPlacement)。第二种技术以前放置患者体素,但使用 LMG 放置种子(G4PVPlacement+LMG)。第三种技术是通过 G4NestedParam 放置患者体素,通过 LMG 放置种子(G4NestedParam+LMG)。所有方案均使用 3 种不同的图像压缩因子进行计算,以改变体素数量。此外,还研究了在靠近源的钙化情况下回填技术的剂量学影响。LMG 消除了回填的需要并简化了几何描述。在两种 LMG 技术中,G4PVPlacement+LMG 对计算时间或内存使用没有任何好处,实际上增加了计算时间,但 G4NestedParam+LMG 减少了计算时间和内存。G4NestedParam+LMG 相对于标准 G4PVPlacement 的优势随着体素数量的增加而增加。在靠近源的钙化情况下,LMG 不仅提高了效率,而且比 G4PVPlacement 更准确地计算剂量。G4NestedParam 与 LMG 相结合为模拟与患者几何形状重叠的辐射源提供了一种新的、高效的方法。近距离治疗施源器的病例将直接扩展该方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验