Giri Chaitanya, Goesmann Fred, Meinert Cornelia, Evans Amanda C, Meierhenrich Uwe J
Max Planck Institute for Solar System Research, Max-Planck-Str. 2, 37191, Katlenburg-Lindau, Germany.
Top Curr Chem. 2013;333:41-82. doi: 10.1007/128_2012_367.
Amino acids are the fundamental building blocks of proteins, the biomolecules that provide cellular structure and function in all living organisms. A majority of amino acids utilized within living systems possess pre-specified orientation geometry (chirality); however the original source for this specific orientation remains uncertain. In order to trace the chemical evolution of life, an appreciation of the synthetic and evolutional origins of the first chiral amino acids must first be gained. Given that the amino acids in our universe are likely to have been synthesized in molecular clouds in interstellar space, it is necessary to understand where and how the first synthesis might have occurred. The asymmetry of the original amino acid synthesis was probably the result of exposure to chiral photons in the form of circularly polarized light (CPL), which has been detected in interstellar molecular clouds. This chirality transfer event, from photons to amino acids, has been successfully recreated experimentally and is likely a combination of both asymmetric synthesis and enantioselective photolysis. A series of innovative studies have reported successful simulation of these environments and afforded production of chiral amino acids under realistic circumstellar and interstellar conditions: irradiation of interstellar ice analogues (CO, CO2, NH3, CH3OH, and H2O) with circularly polarized ultraviolet photons at low temperatures does result in enantiomer enriched amino acid structures (up to 1.3% ee). This topical review summarizes current knowledge and recent discoveries about the simulated interstellar environments within which amino acids were probably formed. A synopsis of the COSAC experiment onboard the ESA cometary mission ROSETTA concludes this review: the ROSETTA mission will soft-land on the nucleus of the comet 67P/Churyumov-Gerasimenko in November 2014, anticipating the first in situ detection of asymmetric organic molecules in cometary ices.
氨基酸是蛋白质的基本组成部分,而蛋白质是在所有生物中提供细胞结构和功能的生物分子。生命系统中使用的大多数氨基酸都具有预先确定的取向几何结构(手性);然而,这种特定取向的最初来源仍不确定。为了追溯生命的化学进化,必须首先了解第一种手性氨基酸的合成和进化起源。鉴于宇宙中的氨基酸可能是在星际空间的分子云中合成的,有必要了解第一次合成可能发生的地点和方式。原始氨基酸合成的不对称性可能是由于暴露于圆偏振光(CPL)形式的手性光子,这种光子已在星际分子云中被检测到。这种从光子到手性氨基酸的手性转移事件已在实验中成功重现,并且可能是不对称合成和对映选择性光解的结合。一系列创新研究报告了对这些环境的成功模拟,并在现实的星周和星际条件下产生了手性氨基酸:在低温下用圆偏振紫外光子照射星际冰类似物(CO、CO2、NH3、CH3OH和H2O)确实会产生对映体富集的氨基酸结构(高达1.3% ee)。这篇专题综述总结了关于可能形成氨基酸的模拟星际环境的当前知识和最新发现。欧洲航天局彗星任务“罗塞塔号”上的COSAC实验概要结束了本综述:“罗塞塔号”任务将于2014年11月在67P/丘留莫夫-格拉西缅科彗星的彗核上软着陆,预计将首次在彗星冰中进行不对称有机分子的原位探测。