Suppr超能文献

一种集成的图像分析平台,用于定量分析单细胞中的信号转导。

An integrated image analysis platform to quantify signal transduction in single cells.

机构信息

ETH-Zurich, Institute of Biochemistry, Schafmattstr. 18, CH-8093 Zurich, Switzerland.

出版信息

Integr Biol (Camb). 2012 Oct;4(10):1274-82. doi: 10.1039/c2ib20139a.

Abstract

Microscopy can provide invaluable information about biological processes at the single cell level. It remains a challenge, however, to extract quantitative information from these types of datasets. We have developed an image analysis platform named YeastQuant to simplify data extraction by offering an integrated method to turn time-lapse movies into single cell measurements. This platform is based on a database with a graphical user interface where the users can describe their experiments. The database is connected to the engineering software Matlab, which allows extracting the desired information by automatically segmenting and quantifying the microscopy images. We implemented three different segmentation methods that recognize individual cells under different conditions, and integrated image analysis protocols that allow measuring and analyzing distinct cellular readouts. To illustrate the power and versatility of YeastQuant, we investigated dynamic signal transduction processes in yeast. First, we quantified the expression of fluorescent reporters induced by osmotic stress to study noise in gene expression. Second, we analyzed the dynamic relocation of endogenous proteins from the cytoplasm to the cell nucleus, which provides a fast measure of pathway activity. These examples demonstrate that YeastQuant provides a versatile and expandable database and an experimental framework that improves image analysis and quantification of diverse microscopy-based readouts. Such dynamic single cell measurements are highly needed to establish mathematical models of signal transduction pathways.

摘要

显微镜可以提供关于单细胞水平生物过程的宝贵信息。然而,从这些类型的数据集中提取定量信息仍然是一个挑战。我们开发了一种名为 YeastQuant 的图像分析平台,通过提供一种将延时电影转换为单细胞测量的集成方法来简化数据提取。该平台基于具有图形用户界面的数据库,用户可以在其中描述他们的实验。该数据库与工程软件 Matlab 相连,该软件允许通过自动分割和量化显微镜图像来提取所需的信息。我们实现了三种不同的分割方法,可以在不同条件下识别单个细胞,并集成了图像分析协议,允许测量和分析不同的细胞读出值。为了说明 YeastQuant 的强大功能和多功能性,我们研究了酵母中的动态信号转导过程。首先,我们量化了渗透压胁迫诱导的荧光报告基因的表达,以研究基因表达中的噪声。其次,我们分析了内源性蛋白质从细胞质到细胞核的动态重定位,这提供了一种快速测量途径活性的方法。这些例子表明,YeastQuant 提供了一个通用且可扩展的数据库和实验框架,可改进基于显微镜的各种读出值的图像分析和量化。为了建立信号转导途径的数学模型,非常需要这种动态的单细胞测量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验